Interrogating and Modulating Sensorimotor Circuits

Amy de Jongh Curry, PhD University of Memphis

Shalini Narayana, PhD Lie Wang, MD Robert S. Waters, PhD University of Tennessee Health Science Center, Memphis, TN

Jack W. Tsao, MD, PhD New York University Langone, New York, NY

Bashir Morshed, PhD Texas Teach University Langone, Lubbock, Texas Students Tina DeCosta Fortune, PhD John Ramshur, PhD Violeta Pellicer Morata, PhD Nasreen Nemati, MS Samiha Khan, MS Solomon Mesfin, MS Cesar Gutierrez Mendoza, BS Lauren Carter

Brain-Computer Interfaces

www.theverge.com/2014/6/12/5804708/world-cup-first-kick-paralyzed-man-in-mind-controlled-exoskeleton World Cup 2014 kicked off by paralyzed man in mindcontrolled robot suit

Overview

Clinical problems

- 1.7 million amputees in US, 70% suffer from phantom limb pain
- 6.8 million stroke survivors in US

- Corpus callosum connects right and left hemispheres •
- Repetitive intracortical microstimulation affects ٠ homotopic site in opposite hemisphere:
 - Increases neuronal firing rates
 - Leads to functional changes (new inputs/outputs)

Stimulation

Telemetry-controlled simultaneous stimulation-andrecording device (SRD)

<u>Repetitive intracortical microstimulation</u> may

- prevent maladaptive cortical reorganization following limb amputation
- induce cortical remodeling in patients suffering from stroke

© MAYO FOUNDATION FOR MEDICAL EDUCATION AND R

Schmahmann J D et al. Brain 2007:130:630-653

Purple Prosthetics. (2020, January 25). *Phantom limb pain management - purple prosthetics*. Phantom Limb Pain Management, https://purpleprosthetics.com/phantom-limb-pain-management/

Phantom Limb Pain

Missing limb

Treatments and Aids for Phantom Limb Pain

U.S. Department of Health and Human Services. (2022, July 18). *Opioids*. National Institutes of Health. https://nida.nih.gov/resea rch-topics/opioids

Raju, S. E., & Boehm, N. L. (2022, February 6). *Deep Brain stimulation*. The Defeating Epilepsy Foundation, https://www.defeatingepilepsy.o rg/treatment-for-epilepsy/deepbrain-stimulation/ Fitzgerald, P., Cassidy, T., & Rege, S. (2022, June 30). *Transcranial magnetic stimulation for Depression - review of the evidence*. Psych Scene Hub. https://psychscenehub.com/psychinsights /transcranial-magnetic-stimulation-fordepression/

Loria, K. (2014, August 5). Brain hacking is having incredible effects and it's just getting started. Business Insider. https://www.businessinsider.com/brainhacking-will-make-us-smarter-and-moreproductive-2014-7 Blatchford. (2019, October 10). Standard Features of a Below Knee Prosthesis https://www.blatchford.co.uk/ prosthetics/information-foramputees/understandingprosthetics/below-kneeprosthesis/

Baun, K. (2020, September 14). Graded motor imagery: Mirror therapy explanation and steps. Redefining Possibility https://www.armdynamics.co m/upper-limb-library/mirrortherapy-explanation-steps

Neuroanatomy Basics

https://dana.org/article/neuroanatomy-the-basics/

Cortical Reorganization that follows amputation is a leading theory underlying Phantom Limb Pain and non-painful Sensation

Homunculus overlaid on Primary Somatosenory Cortex (Red)

Collins, K.L., Russell, H.G., Schumacher, P.J., Robinson-Freeman, K/E., O-Conor, E.C., Gibney, K.D., Yambem, O., Dykes, R.W., Waters, R. S., & Tsao, J. W. (2018). A review of current theories and treatments for phantom limb pain. Journal of Clinical Investigation. 128:6, 2168–2176. https://doi.org/10.1172/JCI94003.

Primary Somatosensory Cortex (S1)

- Processes sensory input
- Contains a somatotopic map of the body surface
- Barrel cortex (rodent, layer IV)
 - Forepaw barrel subfield (FBS)
- Laminar
- Cortical column basic functional unit

https://www.studyblue.com/notes/note/n/brain--cranial-nerves/deck/1242177

Primary Somatosensory Cortex (S1)

- Processes sensory input
- Contains a somatotopic map of the body surface
- Barrel cortex (rodent, layer IV)
 - Forepaw barrel subfield (FBS)
- Laminar
- Cortical column basic functional unit

2011 Pearson Education: https://fuzzyscience.wikispaces.com/Somatosensory+Cortex

Primary Somatosensory Cortex (S1)

- Processes sensory input
- Contains a somatotopic map of the body surface
- Barrel cortex (rodent, layer IV)
 - Forepaw barrel subfield (FBS)
- Laminar
- Cortical column basic functional unit

Primary Somatosensory Cortex (S1)

- Processes sensory input
- Contains a somatotopic map of the body surface
- Barrel cortex (rodent, layer IV)
 - Forepaw barrel subfield (FBS)
- Laminar
- Cortical column basic functional unit

Primary Somatosensory Cortex (S1)

- Processes sensory input
- Contains a somatotopic map of the body surface
- Barrel cortex (rodent, layer IV)
 - Forepaw barrel subfield (FBS)
- Laminar
- Cortical column basic functional unit

Cell-type-specific 3D reconstruction of five neighboring barrel columns in rat vibrissal cortex, Marcel Oberlaender et al.

Forepaw and Lower Jaw Barrel Subfields are Adjacent in Rat

Ļ

Pearson, P., Li, C. & Waters, R. Exp Brain Res, 128, 315–331 (1999). https://doi.org/10.1007/s002210050852

Cortical Reorganization Follows Forelimb Amputation in Rat

Ļ

Delayed Reorganization

Occurs 6 weeks following largescale deafferentation by forelimb amputation

Pearson, P., Li, C. & Waters, R. Effects of large-scale limb deafferentation on the morphological and physiological organization of the forepaw barrel subfield (FBS) in somatosensory cortex (SI) in adult and neonatal rats. *Exp Brain Res*, *128*, 315–331 (1999). https://doi.org/10.1007/s002210050852

Cortical Reorganization Follows Forelimb Amputation in Rat

Rapid Reorganization

Occurs immediately following deafferentation by

- Forelimb amputation
- Brachial plexus nerve cut
- Brachial plexus anesthesia

NR = no response

HL = hindlimb

Cortical Reorganization Follows Forelimb Amputation in Rat

Delayed Reorganization spans entire FBS

Rapid Reorganization

is confined to anterior FBS

- Forelimb amputation (rAMP)
- Brachial plexus nerve cut (BPnc)
- Brachial plexus anesthesia (BPA)

FBS = forepaw barrel subfield

Anatomical connections and GABAergic mechanisms may explain Rapid and Delayed reorganization

Cortical-Cortical Projections → Rapid Reorganization Sub-cortical Projections → Delayed Reorganization

Preliminary findings in intact rat

- LJBSF projects to <u>anterior</u> FBS
- Removal of GABAergic inhibition (GABA_A) unmasks previously unexpressed lower jaw input in <u>anterior</u> FBS
- Ventral posteromedial (VPM) nucleus of thalamus projects to lower jaw

FBS = forepaw barrel subfield LJBSF = lower jaw barrel subfield HBS = hindpaw barrel subfield

Clinical problems

- 1.7 million amputees in US, 70% suffer from phantom limb pain
- 6.8 million stroke survivors in US

Interhemispheric Pathway

- Corpus callosum connects right and left hemispheres ٠
- Repetitive intracortical microstimulation affects ٠ homotopic site in opposite hemisphere:
 - Increases neuronal firing rates
 - Leads to functional changes (new inputs/outputs)

Stimulation

Telemetry-controlled simultaneous stimulation-andrecording device (SRD)

<u>Repetitive intracortical microstimulation</u> may

- prevent maladaptive cortical reorganization following limb amputation
- induce cortical remodeling in patients suffering from stroke

© MAYO FOUNDATION FOR MEDICAL EDUCATION AND RE

Schmahmann J D et al. Brain 2007;130:630-653

Repetitive Intracortical Microstimulation Induces Ipsilateral Response

- Repetitive intracortical microstimulation
 - Increases neuronal firing rates
 - Leads to functional changes (new inputs)

DeCosta-Fortune TM, Ramshur JT, Li CX, de Jongh Curry A, Pellicer-Morata V, Wang L, Waters RS. Repetitive microstimulation in rat primary somatosensory cortex (SI) strengthens the connection between homotopic sites in the opposite SI and leads to expression of previously ineffective input from the ipsilateral forelimb. Brain Res. 2020

Post-stimulation (~30 min)

Pre-stimulation

Following repetitive intracortical microstimulation in one hemisphere, response is evoked in both hemispheres

Stimulation and Recording Device for Rat

High level overview illustrating system signal and communication connections.

Brain-Computer Interface

- Open-source code
- Off-the-shelf components

Repetitive Intracortical Microstimulation Induces Ipsilateral Response

Ramshur JT, Morshed BI, de Jongh Curry AL, Waters RS. Telemetry-controlled simultaneous stimulation-andrecording device (SRD) to study interhemispheric cortical circuits in rat primary somatosensory (SI) cortex. BMC Biomed Eng. 2019

Sensory pathway

Ē

Sensory pathway

Ē

Summary

Clinical problems

- 1.7 million amputees in US, 70% suffer from phantom limb pain
- 6.8 million stroke survivors in US

Interhemispheric Pathway

- Repetitive intracortical microstimulation affects homotopic site in opposite hemisphere:
 - $\circ\,$ Increases neuronal firing rates
 - Leads to functional changes (new inputs/outputs)

SRD Vest Vest

Telemetry-controlled simultaneous stimulation-andrecording device (SRD)

Repetitive intracortical microstimulation may

- prevent maladaptive cortical reorganization following limb amputation
- induce cortical remodeling in patients suffering from stroke

B

Schmahmann J D et al. Brain 2007;130:630-653

Transcranial Magnetic Stimulation

Konakanchi D, de Jongh Curry AL, Waters RS, Narayana S. Focality of the Induced E-Field Is a Contributing Factor in the Choice of TMS Parameters: Evidence from a 3D Computational Model of the Human Brain. Brain Sci. 2020

Transcranial Magnetic Stimulation

https://neurology.ufl.edu/divisions/epilepsy/neurodiagnostic-services/transcranial-magnetic-stimulation/

Transcranial Magnetic Stimulation

Simulations

magnE

1.2

electric field strength in [7/m]

Transcranial Magnetic Stimulation Simulations – Different Coil Types

Magstim 70mm Fig.8

Magstim Double Cone Coil (DCC)

MagVenture MC B70

MagVenture MST Twin

Thank you!

Amy de Jongh Curry, PhD University of Memphis

Shalini Narayana, PhD Lie Wang, MD Robert S. Waters, PhD University of Tennessee Health Science Center, Memphis, TN

Jack W. Tsao, MD, PhD New York University Langone, New York, NY

Bashir Morshed, PhD Texas Teach University Langone, Lubbock, Texas

<u>Students</u>

Tina DeCosta Fortune, PhD

John Ramshur, PhD

Violeta Pellicer Morata, PhD

Nasreen Nemati, MS

Samiha Khan, MS

Solomon Mesfin, MS

Cesar Gutierrez Mendoza, BS

Lauren Carter