

Arkansas Spring Field Trip, OK

Port au Prince, Haiti

Carrefour, Haiti

Dogtooth Bend, IL S

Shelby Co. TN - EOC

Applied and Engaged Scholarship: Perspectives of a Hazards Geographer

Conversation Roadmap

- 1. Motivations driving my curiosity and approach
- 2. Background and experiences events, projects, people
- 3. Goals contributions I seek to make
- 4. Field Trips
- 5. Your questions!

Motivation – *hazardscapes*

Source: EM-DAT, CRED / Université catholique de Louvain, Brussels (Belgium)

OurWorldInData.org/natural-disasters • CC BY

Motivation – Disaster Loss/Experience

Number of recorded natural disaster events, 1900 to 2022

U of

Source: EM-DAT, CRED / Université catholique de Louvain, Brussels (Belgium)

Motivation – *Disaster Loss/Experience*

Motivation – Disaster Loss/Experience

Events – Dictating my path

Goals - Personal & Professional

- 1. Listen to voices and experiences outside my own.
- 2. Support data-driven decision making.
- 3. Apply my knowledge to use for others.
- 4. Empower local and practitioner knowledge.
- 5. Build and sustain connections.
- 6. Question, learn, contribute.

Business, Port-au-Prince

Earth Scientist in Action – Research Agenda

- What makes people and places vulnerable and/or resilient to disruption?
- What is the nature of differential vulnerability?
- How can vulnerabilities be addressed to promote community resilience?
- Mixed methods; multi-disciplinary; collaborative; applied and engaged.

Carrefour, Haiti

0 ace as an Integrative To How do we occupy places? Place

Place – revealed through extreme events

Vulnerability – *Driven by exposure + sensitivity of systems.*

Potential for loss. Capacity to suffer harm.

Built Environment

Lessons Revealed Through Place: Damage and Disruption in Haiti

Relationship between damage and disruption

Community-scale resilience

Using remote sensing to measure and monitor recovery

EXAMPLE – Haiti 12 January 2010 Earthquake

Map Version 10 Processed Thu Mar 4, 2010 04:10:1	4 PM MST - NOT REVIEWED BY HUMAN
--	----------------------------------

PERCEIVED	Notfelt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
POTENTIAL DAMAGE	none	none	none	Very light	Light	Moderate	Moderate/Heavy	Heavy	Very Heavy
PEAK ACC.(%g)	<.17	.17-1.4	1.4-3.9	3.9-9.2	9.2-18	18-34	34-65	65-124	>124
PEAK VEL.(cm/s)	<0.1	0.1-1.1	1.1-3.4	3.4-8.1	8.1-16	16-31	31-60	60-116	>116
INSTRUMENTAL INTENSITY	1	11-111	IV	v	VI	VII	VIII	IX.	Xe

Population Exposed (USGS est.)											
MMI	City	Population									
Х	Petit Goâve	118,000									
Х	Grand Goâve	49,000									
Х	Gressier	26,000									
IX	Léogâne	134,000									
VIII	Port-au-Prince	1,235,000									
VIII	Carrefour	442,000									
VIII	Delmas 73	383,000									
VIII	Miragoane	89,000									
V	Verrettes	49,000									
IV	Santo Domingo	2,202,000									
IV	Santiago de los Caballeros	556,000									

DAMAGE ASSESSMENT: Phased Approach

	Data Used	Duration	Products
Phase 1	 Post-event imagery: 50 cm satellite imagery (GeoEye-1) Pre-event imagery: Quickbird-2 Gridded area: 133.75 km² 	48 hours	Damage map – point location of every collapsed building (>5000)
Phase 2a	 Post-event imagery: 15 cm aerial imagery (Google) Pre-event imagery: Quickbird-2 satellite Gridded area: 346 km² 	96 hours	Damage map showing polygon footprints of collapsed & heavily damaged buildings
Phase 2b	 Post-event imagery: 15 cm aerial imagery (RIT/ImageCat) Pre-event imagery: Quickbird-2 satellite Gridded area: 1024.75 km² Multi-agency validation process 	3 weeks	(>30,000) Estimate of square footage requiring reconstruction Generation of land use information

DAMAGE ASSESSMENT: Geo-Can

Satellite and aerial imagery used for assessments Identification of communities most affected by the earthquake.

Project Objectives

Characterize community-scale disruption and changes in disruption with time.

Explore the damage-disruption relationship

- Strength and nature of relationship
- Changes with time
- Cross-community comparisons
- Balance of perspectives

DATA COLLECTION - WHERE

DATA COLLECTION - HOW

Field deployment in Haiti: May 6-16, 2010

Remote sensing

- GEO-CAN damage assessment
- Early recovery assessment

Interviews

- Community leaders
- Sector representatives

Field Data Collection

VIEWS[™] & GPS Photos

DISRUPTION - COMMUNITY MEETINGS

AVAILABILITY OF BASIC N	Time Period Relative to 1/12/10 Earthquake						
Constructed		Prior to	Immediately following	1 month after	May 2010		
Disruption Scale	Drinking water						
1 = No availability Not available at even the lowest quality	Food – stuffs and prep. equip.						
2 = Minimal availability	Shelter						
Very unreliable, very poor quality, very insufficient, or inaccessible	Sanitation						
to most	Debris removal						
3 = Poor availability	Fuel/energy/utilities						
4 = Moderate availability Available to some people who need it, though it may be	Health care						
inconsistent or of moderate	Education/schools						
5 = Good availability	Safety						
6 = Almost full availability	Livelihood						
7 = Full availability Available at consistent, high	Social networks	11	Sectors				
quality to everyone who needs it	Other						

DATA - AVERAGE AVAILABILITY OF SERVICES

Pre- to post-earthquake comparison																							
	Damage (%)	Drinking water		Food		Shelter		Sanitation		Det	Debris		Energy		Healthcare		Education		afety	Livelihood		Social networks	
	21.10		1		3		4		1		1		1		2		3		0		3		0
	14.98		0.5		3		5		2		1		3		1.5		3		0.75		1.5		2.5
	8.86		2		2		2		2		1		5		1		4		3		2		1
	8.75		2		1		3		1		0		1		3		3		0		3		0
	8.25		2		1		3		3		1		1		2		3		1		1		2
	6.65		3		1		2		3		0		3	▼	2		2		2		1		2
	1.56		3		2		3		0		1		3		2		3		2.5		0		1

Post-disaster to recovery comparison

Damage (%)	e Dr	Drinking water		Food		Shelte		ter Sanitation		Deb	Debris		Energy		Healthcare		Education		Safety		lihood	Social networks		
21.10			0		1		0		0		0		1		3		2		0		0		1	
14.98			1.5		1		3		3		2		2		4.5		2		1.5		0.75		4	
8.86			1		0		0		1		2		3		2		2		3		2		1	
8.75			3		1		0		0		3		0		3		1		1		0		0	
8.25			0		3		0		1		0		0.5		1		1		2		0		1	
6.65			2		1		0		1		0		1		3		1		2		0		0	
1.56			2		1		0		0		0		2		0		1		3		0		4	

RECOVERY EXAMPLE

EARLY RECOVERY: Change in the Built Environment

- 1. What attributes define resilience?
- 2. How do we recognize resilience *before* a disruption?

Lessons: Disruption and Resilience

- 1. The relationship between damage-state and disruption = complex.
- 2. What do Haitian communities reveal about disruption?
- 3. What is resilience?
- 4. How do we recognize resilience?

Lessons – revealed through extreme events

2011 Mississippi River Flood

The Situation

An urban flood event manifested in late April of 2011.

- 1. Major tributaries in Shelby County (Wolf River, Loosahatchie River, Nonconnah Creek) began to swell as a large rain event stalled over the local area
- 2. Another massive precipitation event in the Ohio valley melted headwater snow packs resulting in a historic Mississippi River flood

Would the Mississippi River flood waters reach Memphis before urban flooding of the tributaries subsided?

Mississippi River 2011: Timeline

1927

historic flood

at 45.8 ft

Planning Response April 27 April 28 May 2 May 4 May 3-10 Flooding #1 Flooding is **Evacuation list** Public GIS maps modified modeled; secure ends; MS is produced based on NWS awareness from GIS **River begins** GIS mapping predictions of river maps are website is modeling to rise created; call stage; evacuations created center opens begin

1937

historic flood

at 48.7 ft

	Resp	onse			Recovery								
May MS F crests a	/ 10 River t 47.6 ft	Ma Rec valida flood mo	y 11 on to ite GIS extent odel	May Prop identif inspect waters	y 13 erties fied for tions as recede	May Dam asses QA/0	y 29 nage sment QC'd	Ju Dar asses validate GIS & fie	ne 5 mage ssment d through eld survey				

Vulnerability in Action – *Driven by exposure and sensitivity of systems.*

Vulnerability – *Intersecting Exposure with Vulnerability.*

Exercise

What places would you consider "vulnerable" to disruption?

What places would you consider "resilient" to disruption?

Thoughts of a Hazards Geographer

- 1. Extreme events serve as sources of shock to a system.
- 2. The social fabric of place serves to amplify or dampen the consequences of the shock.
- 3. Context of place matters.
- 4. Building community capacity to absorb extreme events is key to lessening their consequences.
- Complexity multi-disciplinary and multi-generational teams are crucial.

Contact Information

Arleen Hill 113 Johnson Hall 901-678-2589 aahill@memphis.edu

