Tree-Ring Reconstructed Drought Atlases: How did we get here?

Dr. Dorian J. Burnette, Dept. of Earth Sciences, University of Memphis

Mid-19th Century Drought 1856-1865 North American Drought Atlas 1540 Drought Old World Drought Atlas

Dendrochronology

Tree-Ring Dating = the most accurate and precise dating method in geochronology

Principle of Site Selection

Southern beech (Nothofagus sp.) Chile

Ponderosa pine (Pinus ponderosae) Colorado

- Require trees sensitive to variations in environmental conditions
- Size not necessarily equal to age
- Longevity under adversity
- Need non-commercial sites

Principle of Site Selection

- Dependent on the species:
 - Baldcypress growth is directly correlated with rainfall, in spite of flooded habitat
 - Dissolved oxygen gradient, stratification of root system, low flows during drought, high evapotranspiration demand, negative correlation between temperature and dissolved oxygen

Tree-Ring Samples

 Massive replication with 50-100 trees sampled per site = dendrochronology

Tree-Ring Chronology Development

Annual Growth Rings, Blue Oak

Dating completed to the precise calendar year

Tree-Ring Chronology Development

The 'Bridge Method' of chronology extension into prehistory

The Skeleton Plot

FIG. 7. Construction of a skeleton plot from an idealized tree-ring sequence. Ring widths are represented on the plot by vertical lines in an inverse proportion; that is, tall lines represent narrow rings. An exceptionally wide ring is designated by a "B" (big), and the location of a missing ring, marked on the specimen by offset pinholes, is identified on the plot by a full two-centimeter line in red (dashed). Horizontal scale is I year per 2 mm.

From Ferguson 1970, Concepts and Techniques of Dendrochronology

COFECHA

PROGRAM COFECHA

Program COFECHA does data quality control on a set of tree-ring measurements, verifying crossdating among measurement series and indicating possible dating or measurement problems. It identifies portions of tree-ring series that may have dating errors or important errors in measurement. You may also check crossdating among chronologies.

Before problems are identified each time series is transformed to enhance characteristics related to crossdating. Low-frequency variance is removed by cubic smoothing spline. Autoregressive modeling removes persistence. To weigh proportional differences equally the series is log-transformed. Each transformed series is then tested against the master dating series segment by segment, and successive segments are lagged with a 50% overlap.

Maximum time span 4096 years

For more information type: ?

Identify job (up to 5 characters) => B27

CROSSDATED TREE-RING SERIES ... Name of EXISTING INPUT file => B27.raw

____First 8 lines____B27.raw Blue Oak Site 27, (Rock Springs Ranch, San Benito County, CA, USA. B27 QUDG +3 1067M RW UAFACC#=04-201 Coll: Stahle, Griffin 03/23/2004 1379-2003 B2701A 1836 996 1334 2131 1496 B2701A 1840 1697 263 1807 267 463 584 559 1347 1301 1223 463 963 157 263 708 320 605 B2701A 1850 1673 1936 1715 1138 434 265 562 4566 1762 B2701A 1860 944 1671 1038 3086 732 618 1013 1024 B2701A 1870 2146 1332 1458 1262 2577 387 2433 279 809 3451 B2701A 1880 1250 826 1200 1363 2835 1222 1302 1236 Format is Measurements, correct? <Y>/N => Checking time span Time series span 1379 2003 625 years 21 series, mean length 230.19 yrs No time interval is covered by all series

UNDATED TREE-RING SERIES ... Name of EXISTING INPUT file =>

TITLE OF THIS RUN => Rock Springs Ranch, CA Blue Oak, Teaching Collection

COFECHA Select number or first letter to modify: Current values Rigidity of SPLINE for filtering SEGMENT length to examine 50 lagged 25 AUTOREGRESSIVE MODEL TRANSFORM series to logarithms CORRELATION critical level .3281 Type P MASTER dating series, save LIST ring measurements Parts of output to print 123 Omit absent rings in master series & segment corr 1234567 First-difference transform of data

Initial or number of option or <CR> to proceed =>

- Spanish for crossdate
- Segmented correlation analysis program
 - Holmes (1983, Tree-Ring Bulletin)
 - Grissino-Mayer (2001, Tree-Ring Research)

COFECHA

IPART 5: CORRELA	TION OF SER	IES BY	SEGME	NTS:	Rock	spri	ngs Ra	inch I	3lue (Dak Te	eachir	ng				10:36	i Tue	29 I	Nov 20)05 F	age	5
Correlations of Flags: A = corr	50-year da elation und	ted see	gments 3281 k	, laç out hi	ighest	25 ye as (ears dated;	B	= corr	elati	ion hi	igher	at ot	her t	han c	dated	posit	ion				
Seq Series Time	e_span 137 1424	5 1400 4 1449	1425 1474	1450 1499	1475 1524	1500 1549	1525 1574	1550 1599	1575 1624	1600 1649	1625 1674	1650 1699	1675 1724	1700 1749	1725 1774	1750 1799	1775 1824	1800 1849	1825 1874	1850 1899		
1 B2701A 183 2 B2702A 182 3 B2702A 183 4 B2702A 183 6 B2722A 167 5 B2729A 183 6 B2735A 179 7 B2740A 183 8 B2743A 165 9 B2744A 165 10 B2747A 167 11 B2748B 161 12 B2754A 189 13 B2761A 174	6 2003 3 2003 6 1986 8 2003 9 2003 4 2000 29 1920 88 1900 70 1906 9 1920 5 2003 6 1980									. 90	. 88 . 91	. 90 . 86 . 91	.90 .91 .86 .86 .85	. 89 . 91 . 85 . 85 . 82	. 86 . 88 . 83 . 82 . 83 . 83 . 83	. 87 . 91 . 89 . 84 . 83 . 87	.87 .85 .84 .93 .90 .87 .90	. 80 . 88 . 82 . 83 . 93 . 89 . 89 . 84 . 92	93 88 85 90 89 87 90 93 93 78 85 91	.95 .91 .86 .94 .91 .91 .90 .91 .90 .91 .90 .77 .75 .92		
14 B2765A 151 15 B2767A 164 16 B2770B 157 17 B2773B 152	1 1696 0 1890 8 1860 4 1839					.76	.65 .69	.66 .67	.83 .75 .80	.81 .82 .79	.87 .57 .91 .86	.85 .83 .89 .89	.92 .89 .85	.87 .91 .78	. 87 . 84 . 82	. 89 . 84 . 89	.71 .83 .86	. 68 . 82 . 84	.86 .81	. 81		
18 B2776A 137 19 B2777A 161 20 B2779A 147 21 B2780B 139	79 1525 .7 .8 1870 71 1677 97 1844 .7	1.73 1.73	.75	.80 .77 .82	.81 .82 .87	- 82 - 83 - 88	.69 .75	.65	.76	.91 .75 .84	.91 .82 .91	. 87 . 83 . 89	. 84 . 87	.81 .78	. 68 . 56	.73	. 86 . 87	.85 .90	. 88	00		
AV segment correlation .71 .73 .74 .80 .83 .89 .87 .87 .85 .80 .85 .87 .85 .80 .85 .87 .85 .80 .85 .87 .85 .80 .85 .87 .85 .80 .85 .87 .85 .80 .85 .87 .85 .80 .85 .87 .85 .80 .85 .87 .85 .80 .85 .87 .85 .80 .85 .87 .85 .80 .85 .87 .85 .80 .85 .87 .85 .80 .85 .87 .85 .80 .85 .87 .85 .80 .85 .87 .85 .87 .85 .87 .85 .87 .85 .87 .85 .87 .85 .87 .85 .87 .87 .87 .85 .87 .87 .87 .87 .87 .87 .87 .87 .87 .87 .87 .87 .87 .87 .87 .87 .87 .87 .87 .																						
Flags: A = corr	elation und	er .	3281 k	out hi	ighest	asi	dated;	B =	= corr	elati	ion hi	igher	at ot	her t	han o	dated	posit	ion				
	2_span 187 1924	4 1949	1925 1974	1950	2024																	
1 B2701A 18 2 B2702A 182 3 B2707A 181 4 B2722A 167 5 B2729A 183 6 B2735A 179 7 B2740A 187 8 B2743A 167 9 B2747A 167 12 B2754A 183	6 2003 .9 6 2003 .8 3 2003 .8 6 1986 .8 8 2003 .7 90 2003 .9 4 2003 .9 19 1920 .8 19 1920 .8 19 1906 .7 5 2003 .8	5 .93 9 .87 7 .87 9 .79 8 .76 1 .88 1 .88 1 .87 9 0 7 74	. 94 . 93 . 87 . 83 . 90 . 91 . 84	. 96 . 93 . 90 . 80 . 89 . 93 . 88	.97 .92 .90 .86 .92 .88																	
13 B2761A 174 Av segment corre	6 1980 .93 elation .8	2.84 7.84	.82 .87	.82 .89	. 90																	

PART 5: CORRELATION OF SERIES BY SEGMENTS:

15:37 Tue 29 Nov 2005 Page 5 ___

6

Correlation Flags: A	ns of 50-yea = correlation	r date under	edse	gment: 3281	s, laq but hi	ged ighest	25 ye as (ears dated	; в	= cor	relat	ion h	igher	at of	ther 1	than	dated	posi	tion		
Seq Series	Time_span	1375 1424	1400 1449	1425 1474	1450 1499	1475 1524	1500 1549	1525 1574	$1550 \\ 1599$	1575 1624	1600 1649	1625 1674	1650 1699	1675 1724	1700 1749	1725 1774	1750 1799	1775 1824	1800 1849	1825 1874	1850 1899
1 B2701A 2 B2702A 3 B2707A 4 B2722A 5 B2729A 6 B2735A 7 B2740A	1836 2003 1826 2003 1813 2003 1676 1986 1838 2003 1790 2003 1874 2000													. 89	. 88	. 85	. 86	. 88	. 80 . 88 . 83	. 93 . 86 . 85 . 89 . 90 . 87	.95 .89 .86 .93 .91 .91
8 B2743A 9 B2744A 10 B2747A 11 B2748B 12 B2754A	1629 1920 1629 1920 1698 1900 1670 1906 1619 1890 1855 2003										. 89	. 86 . 90	.87 .84 .91	. 89 . 85 . 84 . 84	.91 .84 .86 .82	. 87 . 84 . 82 . 82	. 89 . 89 . 83 . 83	.83 .92 .90 .86	.83 .91 .88 .83	.89 .91 .77 .83	.91 .89 .76 .81 .77
13 B2761A 14 B2765A 15 B2767A 16 B2770B 17 B2773B	1746 1980 1511 1695 1640 1891 1578 1860 1524 1839						.76	. 64 . 69	.13	B04 .64 .70	B071 .78 .73	B04 .61 .89 .84	B13 61 .87 .89	B . 65 . 88 . 86	.73 .91 .78	.86 .64 .84 .81	. 87 . 28/ . 83 . 88	. 90 A . 09 84 . 86	01 3.076 .83 .84	90 3 .141 .81	.91 B05B
18 B2776A 19 B2777A 20 B2779A 21 B2780B Av segment	1379 1525 1618 1870 1471 1677 1397 1844 correlation	.71 .71 .71	.73 .73 .73	.75 .73 .74	.80 .77 .82 .80	. 81 . 82 . 87 . 83	. 82 . 83 . 88 . 80	. 69 . 75 . 69	. 62 . 68 . 50	.69 .75 .55	.87 .69 .81 .67	.87 .81 .90 .74	. 85 . 83 . 88 . 74	. 84 . 85 . 84	. 80 . 78 . 83	.66 .57 .78	.71 .58 .77	. 84 . 85 . 80	.85 .89 .80	. 89 . 82	. 81
IPART 5: CO	DRRELATION OF	SERI	ES BY	SEGMI	ENTS:		25. 14										15:3	7 Tu	⊵ 29 I	Nov 20	005 Page (
Flags: A	= correlation	under		3281	out hi	ighest	as (dated	; в	= cor	relat	ion h	igher	at of	ther 1	than	dated	posit	tion		
Seq Series	Time_span	1875 1924	1900 1949	1925 1974	1950 1999	1975 2024															
1 B2701A 2 B2702A 3 B2707A 4 B2722A 5 B2729A 6 B2735A 7 B2740A 8 B2743A 9 B2744A 10 B2747A	1836 2003 1826 2003 1813 2003 1676 1986 1838 2003 1790 2003 1874 2000 1629 1920 1698 1900 1670 1906	.95 .88 .87 .89 .78 .91 .90 .90 .89 .77	-93 -87 -87 -79 -76 -88 -88 -87	94 93 87 83 90 91 84	. 96 . 93 . 90 . 80 . 89 . 93 . 88	.97 .92 .90 .86 .92 .88															
13 B2761A Av segment	1746 1980 correlation	. 92 . 87	. 84 . 84	. 82 . 87	- 82 - 89	. 90															

COFECHA

B2765A 151	1 to	1695	185	years						\sim						Ser	ies 14
[A] Segment	High	-10	9	-8 -7	-6	-5 -4	3	-2 - 1	+0	+1	+2 +3	+4	+5 +6	+7	+8 +	9 +10	
1550 1599 1575 1624 1600 1649 1625 1674 1646 1695	1 1 1 1	.04 19 - 15 - .15 .07 -	.20 .03 .04 .08	1005 0602 08 .03 3006 1302	18 - 11 09 - .01 -	.11 .27 .03 .27 .09 .12 .1908 .0812	21 . 22 06 .08	02 .14 10 .03 11 .01 0202 0904	.13 04 07 04 13	.32*- .77*- .82*- .87*	3905 30 .06 04 .10 0513 1016	.05 .02 .00 .04	06 .25 05 .16 09 .00 0515 .0401	04 27 - 17 13 -	.09 .1 .09 .0 .01 .0 .011	210 911 608 4 .08 5 .04	
						742 4				\mathbf{U}							
LBJ ENTIRE SE LOWER 1550 to 1	1691> 599 50	errect 022	on cor 1612	<022	1639	24) 15:	1676>	015	1622>	011	1668<	011	Higher	1579	.019	1532	.016
Lower	1595>	048	1565	<040	1591	<039	1599<	035	1596<	026	1588>	024	Higher	1579	.091	1594	.058
15/5 to 1 Lower 1600 to 1	.624 se 1612<	gment: 035	1622	>029	1595	>027	1591<	024	1599<	023	1596<	017	Higher	1579	.073	1613	.051
Lower 1625 to 1	1639> 674 SP	051	1622	>033	1612	<024	1635<	020	1637>	014	1634>	013	Higher	1613	.069	1621	.028
Lower 1646 to 1	1639>	064	1668	<040	1667	>039	1655>	035	1635<	025	1670>	020	Higher	1654	.057	1669	.036
Lower	1676>	039	1691	>034	1668	<031	1667>	028	1655>	025	1680<	022	Higher	1654	.057	1669	.036
[C] Year-to-y 1612 16	vear ch i13 6	anges d .2 SD	divergi 1690	ng by o [.] 1691	ver 4.0 4.6 SD	std dev	iations:										
[E] Outliers 1565 -4 1612-10 1655 +5 1695 +3	22 .7 SD; .7 SD; .1 SD; .1 SD	3.0 S 158 161 166	5D abov 30 +4.3 L3 +5.3 57 +5.1	e or -4 SD; SD; SD; SD;	.5 SD b 1588 + 1622 + 1668 -	elow mea 3.8 SD; 5.6 SD; 5.0 SD;	n for ye 1590 1626 1670	ar +3.2 SD +3.1 SD +4.1 SD	; 1 ; 16 ; 10	595 +5. 534 +3. 576 +5.	0 SD; 1 SD; 5 SD;	1597 1637 1679	+3.1 SD; +3.8 SD; +3.3 SD;	160 163 169)3 +3.0 9 +6.0 91 +8.8	SD; SD; SD;	

ARSTAN

~ ~ ~		~ ~
***	program ARSTAN40	**
***		ж×
***	creation date:	ж×
***	10/26/05	ж×
***		ж×
***	programmed by:	ж×
***	Dr. Edward R. Cook	ж×
***	Paul J. Krusic	ж×
***	tree-ring laboratory	ж×
***	lamont-doherty earth obs	ж×
***	palisades, n.y. 10964	ж×
***	drdendro@ldeo.columbia.edu	ж×
***	pjk@ldeo.columbia.edu	ж×
***	www.ldeo.columbia.edu/trl	ж×
***		ж×
***	*******************************	(**
***	*********************************	(**

maximum tree-ring chronology length: 5000 maximum number of tree-ring series: 1500

<ret> to run, \checkmark to exit, h for more info:

1

open the file listing the data file names type h for help or <ret> to enter them ==>

okay, so enter your data file name(s) which will be stored in the new file: arstan.files when done, hit <ret> to process the data file(s).

file name # 1: B27.RAW
file name # 2:

number of files to be processed:

okay, enter your overall run title: ==> Rock Springs Ranch, CA Blue Oak, Teaching Collection

run in batch mode from log file? y/<n>/h \quad ==>

- Autoregressive Modeling Standardization (ARSTAN)
 - Cook (1985, Ph.D.
 Dissertation, University of Arizona)
- Used to develop treering chronologies

ARSTAN

Mesoamerican Megadroughts

Stahle et al. 2011, Geophysical Research Letters

Taxodium, RD Griffin

Basalt & ancient Montezuma baldypress, Barranca de Amealco, Queretaro 90 km from the Temple of the Sun, 60 km from Tula New chronology: AD 771 - 2008

Mesoamerican Megadroughts

Stahle et al. 2011, Geophysical Research Letters

Instrumental Palmer Drought Severity Index

1933-1940

Original North American Drought Atlas (1999)

From Ed Cook

From Cook et al. (2010), Journal of Quaternary Science

- Calibration: 1928-1978
- Verification: 1895-1927

From Cook et al. (2010), Journal of Quaternary Science

Instrumental Summer PDSI

Tree-Ring Reconstructed Summer PDSI

 "Reality check" of the tree-ring reconstructions vs. real instrumental data shows a similar "footprint"

Pike Expedition, Summer PDSI

Long Expedition, Summer PDSI

- Zebulon Pike (1806-1807) "These vast plains of the western hemisphere, may become in time equally celebrated as the sandy deserts of Africa."
- Stephen H. Long (1820) labeled the central Great Plains as "the Great American Desert." The region "is almost wholly unfit for cultivation...the scarcity of wood and water, almost uniformly prevalent, will prove an insuperable obstacle in the way of settling the country."

Tree-Ring Drought Atlas Portal

Spanish Conquest Drought June-August PDSI 1521-1524 Mexican Drought Atlas

Burnette (2021, Bulletin of the American Meteorological Society)

- Suite of user-friendly webtools for all treering reconstructed drought atlases
- Eastern Australia and New Zealand, Europe, Russia, Mexico, Monsoon Asia, North America, South America
- drought.memphis.edu

Spiro Drought Reconstruction

Spiro Grid Point June-August Reconstruction Dark Red Lines = Failed Harvest Threshold

From 1344-1400 = 23 years with PDSI ≤ -2 (failed harvest)

Burnette et al. (2020): Climate change, ritual practice, and weather deities at Spiro. *Recovering Ancient Spiro: Native American Art, Ritual, and Cosmic Renewal.*

Earlywood and Latewood

 Annual Ring = Earlywood (EW) + Latewood (LW) couplet

North American Seasonal Drought Atlas?

- What to reconstruct?
- How to screen?

North American Seasonal Precipitation Atlas

Reconstruct seasonal precipitation totals

North American Seasonal Precipitation Atlas

Reconstruct seasonal precipitation totals

North American Seasonal Precipitation Atlas

• How to show spatial drought?

How to Make Drought Atlases "Living"?

- 1. Simple attachment of the most recent data on to the end of the original reconstruction?
- 2. Regression of most recent gridded data on the original reconstruction?
- 3. Machine learning of the most recent gridded data on the original reconstruction?

Thank You

Montezuma Baldcypress, Barranca de Amealco, Queretaro

- E-Mail: djbrntte@memphis.edu
- Drought Atlases: drought.memphis.edu
- Personal Website: www.djburnette.com
- NSF Grants: AGS-1266015, AGS-2201584