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WHERE, WHEN, AND WHY OF EXTREME FLOODS

Europe's deadly floods leave scientists stunned

Despite improvements, flood forecasting sometimes fails to flag risks along smaller streams

20 JUL 2021 - BY WARREN CORNWALL

AP News

=5 Deadly flooding is hitting several
& countries at once. Scientists say this
@ will only be more common
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People wade through a street due to a heavy rain in Kurume, Fukwoka prefecture, southern

July 10,2023, Scient long warned that more extreme rainfall is expected in 2 warming world. (Kyodo
News via AP)
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Motivation




Photo Source: Army Corps of Engineers

Flood disasters are occurring more frequently




Between 2000 and 2015, the
world pop. exposed to flooding
Increased by 20 to 24%.

(Tellman et al. 2021, Nature 596)
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Flood disasters are occurring more frequently



80% of all North American dams
are older than 50 years old

(United Nations University Institute for Water,
Environment and Health, 2021)
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Flood disasters are occurring more frequently




Extreme rainfall is increasing
(high confidence) &
extreme flooding will likely increase
(medium confidence).

(IPCC Report, 2022)
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Flood disasters are occurring more frequently



Challenge #1:
The drivers of extreme floods are poorly understood

within the complex fluvial system

Flood Drivers:
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Floods are threshold responses in a complex system
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Floods are threshold responses in a complex system
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Floods are threshold responses in a complex system
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Precipitation

Ex macropore connectlon

Aeollan sandy soil Light dark loessial soil
Ju et al. 2020 Catena

Ex. Concentrated flows through gullies

Floods are threshold responses in a complex system
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Ex. Concentrated flows through gullies

Floods are threshold responses in a complex system




“..the sheer volume of data cannot be handled, and the required computing
power is missing. Therefore, we need to cope with appropriate scale
transitions in our model concepts, which is a formidable scientific challenge,
and we need to turn on our brains instead of big computers, which is more
exciting anyway.”

Hans-Jorg Vogel (2019), Scale issues in soil hydrology. Vadose Zone Journal.

Research in complex systems



Where thinking
transforms into testable
conceptual frameworks

Research in complex systems
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Challenge #2:
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Natural sedimentary records of flood persist for millenn



An example from Rapid City, SD - Paleoflood study by Tessa Harden and other (USGS, 2011)
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Gauge Data Only » With Paleoflood Data

Paleoflood data provide important context for decision making




Natural archives in paleoflood hydrology:
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Paleoflood hydrology
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What do you see here? FDRG
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Silt covering vegetation shows extent of recent flooding

What do you see here? FDRG
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A VERY active paleoflood/climate group working in Spain:
e https://www.floodsresearch.com/
e Museo Nacional de Ciencias Naturales-CSIC in Madrid

International Paleoflood/ Paleoclimate Groups



https://www.floodsresearch.com/
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A New Procedure for Reconstructing Alluvial Paleoflood Hydrologic Data
(1) How do we identify paleofloods?

Grain Size Analysis

Identify grain size classes
associated with floods
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(2) How do we estimate paleoflood stage?

(3) How do we estimate paleoflood discharges?

Hillslope

Eq. 1 (Cyretal., 2015):
(ps - pw)edgo
PwS

hys >

lzpf = minimum paleoflood stage
pw = density of water, 1000 kg/m3
ps = density of quartz, 2650 kg/m3
S = longitudinal channel bed slope
6 = 0.047, Shield’s parameter of sands (Brandon et al., 2014)
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Approach: Discharge Estimation
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We identified 6 additional 30000 -
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Study 1: Improving flood frequency analyses w/ paleo data




We identified 6 additional 30000 -
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Model uncertainty improved, yay!
But.... Do you notice anything that may prevent this model from
accurately representing flood hazard in the future?

Study 1: Improving flood frequency analyses w/ paleo data




We identified 6 additional
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1867 Paleolood .
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Study 1: Improving flood frequency analyses w/ paleo data
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Study 1: Broader Impacts




Periods of extreme floods (= Q,,) from
~7,900 cal yrs BP, 6,000 — 4,900 cal yrs BP, and 1000 — 80 cal yrs BP

Long-term, persistent iV
shifts in flood magnitude:
Extreme
Large
Moderate [ g
I I
cal. yrs. B.P. 10,000 8000 6000 4000 2000 0
[ I I I [ |
BCE/CE goop 6000 4000 2000 0 1950
8.2 kya Event HCO MCA LIA

Study 2: Regional flood trends



Looking to other paleoclimate records in the region we reveal the following patterns:

1. Extreme flood clusters corresponded with periods
increased summer precipitation.
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Study 2: Regional flood trends




Looking to other paleoclimate records in the region we reveal the following patterns:

1. Extreme flood clusters corresponded with periods

increased summer precipitation.
2. Extreme flood clusters were proceeded by extended or

severe dry periods.
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Study 2: Regional flood trends




Looking to other paleoclimate records in the region we reveal the following patterns:

1. Extreme flood clusters corresponded with periods
increased summer precipitation.

2. Extreme flood clusters were proceeded by extended or
severe dry periods.
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Study 2: Regional flood trends




Looking to other paleoclimate records in the region we reveal the following patterns:

1. Extreme flood clusters corresponded with periods increased summer

precipitation.
2. Extreme flood clusters were proceeded by extended or severe dry periods.
3. Extreme flood clusters were initiated only during very abrupt shifts from dry to

wet climate (> 1 sd per 200 yrs)

Abrupt Climate Change Events
Shuman and Marsiek, 2016
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Study 2: Regional flood trends



Looking to other paleoclimate records in the region we reveal the following patterns:

Drought alters watershed Abrupt shifts to warm-season Extreme floods occur and readjust

conditions that reflect low precipitation exceeds - morphology within the watershed;
precipitation / flow conditions geomorphicthresholds diminishing flood hazard for a period.

Abrupt Climate Change Events

Shuman and Marsiek, 2016
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Study 2: Regional flood trends




British Colombia, Canada 2021 California, USA 2017

Image: Don Mackinnon/ AFP via Getty Images. Image: Josh Edelson via Getty Images.

“Deficit to Deluge”

Broader Impacts




Future Changes in Dry to Wet Transitions:
| ] | Three-fifths of the world is projected to

T e ~ -~ - >
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= : A gl rf.‘ﬂ o J‘, - .
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Y — & ® ¥ ] Ourfindings indicate urgent needs to:
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» Evaluate the risk of compound
. drought/ flood hazards
» Incorporate concepts of
geomorphic thresholds into
" - flood risk assessment
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 ldentify ways to manage rivers
in ways that allow system to

2 fon SFTEEEE

re-adjust to increases in
precipitation variability

Source: Chen and Wang (2022) Geophysical Research Letters

Broader Impacts: Broader Impacts and Future Directions
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A change point (CP) represents a
sedimentation phase with a
significant change in the mean
volume of coarser sand.

Unique LOESS procedures for
each sedimentation phase to
identify extreme flood peaks
relative to the size of floods
within an individual phase.

Phase 1 contained finer and less
frequent flood deposits. When
we applied LOESS smoothing to
this period, we could identify
flood peaks even when they are
finer than flood peaks in more
recent phases.
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Levees are topographically
connected to a wide range of
possible flows over bankfull
including >Q; . Therefore, a
range of discharge may be
captured in positive residuals.

We censor peaks with positive
residuals below 4 because
extreme floods are most
impactful data for flood
frequency curves.

The influence AFE procedure
means that absolute magnitude
values do not directly correlate
with positive residuals.




We identified 6 additional
extreme floods over ~6,000
years in different climates:
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