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Abstract

Background: The scalp-recorded frequency-following response (FFR), an auditory-evoked potential
with putative neural generators in the rostral brainstem, provides a robust representation of the neuro-

physiologic encoding of complex stimuli. The FFR is rapidly becoming a valuable tool for understanding
the neural transcription of speech and music, language-related processing disorders, and brain plasticity

at initial stages of the auditory pathway. Despite its potential clinical and empirical utility, determining
the presence of a response is still dependent on the subjective interpretation by an experimenter/

clinician.

Purpose: The purpose of the present work was to develop and validate a fully objective procedure for the

automatic detection of FFRs elicited by complex auditory stimuli, including speech.

Research Design:Mutual information (MI) was computed between the spectrographic representation of

neural FFRs and their evoking acoustic stimuli to quantify the amount of shared time-frequency infor-
mation between electrophysiologic responses and stimulus acoustics. To remove human subjectivity

associated with typical response evaluation, FFRs were first simulated at known signal-to-noise ratios
using a computational model of the auditory periphery. The MI at which model FFRs contained 13 dB

Signal-to-noise ratio was taken as the criterion threshold (uMI) for the presence of a response. uMI was
then applied as a binary classifier on actual neurophysiologic responses recorded previously in human

participants (n5 35). Sham recordings, in which no stimulus was presented to participants, allowed us to
determine the receiver operating characteristics of the MI metric and the capabilities of the algorithm to

segregate true evoked responses from sham recordings.

Results: Results showed high overall accuracy (93%) in the metric’s ability to identify true responses

from sham recordings. The metric’s overall performance was considerably better than trained human
observers who, on average, accurately identified only z75% of the true neural responses. Complemen-

tary results were found in the metric’s receiver operating characteristic test performance characteristics
with a sensitivity and specificity of 97% and 85%, respectively. Additionally, MI increased monotonically

and was asymptotic with increasing trials (i.e., sweeps) contributing to the averaged FFR and, thus, can
be used as a stopping criteria for signal averaging.

Conclusions: The present results demonstrate that the mutual information between a complex acoustic
stimulus and its corresponding brainstem response can provide a completely objective and robust

method for automated FFR detection. Application of the MI metric to evoked potential speech audiometry
testing may provide clinicians with a more robust tool to quantitatively evaluate the presence and quality

of speech-evoked brainstem responses ultimately minimizing subjective interpretation and human error.
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frequency-following response; MI 5 mutual information; PSTH 5 post-stimulus time histogram; ROC 5

receiver operating characteristic; SNR 5 signal-to-noise ratio

INTRODUCTION

O
bjective measures of audiologic function, e.g.,

evoked potential audiometry (Picton et al,

1977), are the backbone of current newborn

hearing screening standards and neurotologic observa-
tion (e.g., intraoperative monitoring). Auditory-evoked

potentials (AEPs) are neuroelectric brain responses

recorded at the scalp that reflect the summed activity

of various nuclei along the ascending auditory pathway.

In particular, the auditory brainstem response (ABR)

has become a routine measure used to noninvasively

assess the functional integrity of auditory structures

and estimate hearing sensitivity in both adults (Davis
andHirsh, 1976; Stapells, 2000) and newborns (Sininger

et al, 1997; Berg et al, 2011). Importantly, these neuro-

physiologic tests offer a means to probe the hearing

mechanism without an overt patient response. As such,

objective audiometric techniques provide an ideal means

to obtain diagnosticmeasures on difficult-to-test or unco-

operative patients (e.g., infants). Indeed, current new-

born hearing screening guidelines recommend the use
of electrophysiologic measures such as the ABR to gauge

auditory neural function and to identify abnormal audi-

tory processing before infants leave the neonatal nursery

(American Academy of Pediatrics, 2007). Early detection

of hearing impairment and threshold estimation via

evoked potential audiometry can be used to guide initial

fitting of amplification in very young infants (Stapells,

2000). Having objective tools to detect and evaluate these
AEPs is therefore critical in maximizing potential treat-

ment benefits and long-term language outcomes (Carney

and Moeller, 1998).

Rapid treatment intervention rests critically on the

ability to detect and validate the presence of the AEP.

Unfortunately, traditional recording practice requires that

responses be identified by the subjective interpretation of a

human observer. With use of ABRs for example, hearing
thresholds are typically estimated based on visual wave-

form inspection whereby an operator identifies the lowest

stimulus intensity, yielding a reproducible wave V com-

plex such that the component is just distinguishable from

background noise (Picton, 2010). Although visual wave-

form inspection remains the conventional “gold standard”

in evoked potential analysis, the objectivity of AEP mea-

sures is all but lost by the subjective nature of conventional
human validation (Vidler and Parkert, 2004; Bogaerts

et al, 2009). To address this issue, recent methodologies

have been developed in an attempt to remove the subjec-

tivity and bias of human observers in order to provide a

“hands-off” approach to response detection (for review,

see Sininger, 1993; Hyde et al, 1998). Information regard-

ing the overall waveform shape, amplitude, and morpho-

logic pattern can be used in either template matching or

cross-correlation procedures to assess response reliability

(Coppola et al, 1978; Picton et al, 1983). In these ap-

proaches, the degree of similarity is computed between a

running AEP average and known response template (e.g.,
averageAEP ofmultiple individuals). Given the determin-

istic nature of the AEP, higher correlations are indicative

of a present response. Other techniques (e.g., “split-buffer”

or “6 reference” averaging) compare the difference in

running AEP averages between two recording traces

and, thus, provide an estimate of the residual electroence-

phalogram (EEG) noise/signal-to-noise ratio (SNR) with

increasing number of stimulus sweeps (Picton et al,
1983). A response is then assumed to be present when

the running average exceeds a predefined stopping rule

(e.g., SNR .3 dB).

The most widely known approach under these tech-

niques is theFsp (“single pointF”)metric, a statistic that

considers the ratio between signal variance at a given sam-

ple in the AEP trace to the variance of the background

noise (Elberling and Don, 1984; Sininger, 1993; Özdamar
andDelgado, 1996). The rationale behind theFsp is that the

AEP is a deterministic signal whose amplitude is (theoret-

ically) constant across trials. In contrast, background noise

of the EEG is assumed to be stochastic. Hence, the greater

the random EEG noise, the greater the sweep-to-sweep

variability in a given time-point’s amplitude (Sininger,

1993). TheFsp is appealing in that its sampling distribution

can be quantified, thus allowing the operator or software to
express response SNR statistically, and terminate averag-

ing when a critical Fsp (and corresponding p-value) is

exceeded. Fsp and similar automated ABR detection algo-

rithms are currently available in most commercial clinical

and research-grade AEP systems (e.g., Bio-Logic: ABaer;

Interacoustics: Eclipse; IHS: Smart Screener; NeuroScan:

Curry 7).Although these techniques have experienced suc-

cess in the analysis of click-evoked ABRs, comparable
objective algorithms have yet to be developed for other

AEPs of interest to the clinical and research communities.

The human brainstem frequency-following response

(FFR) is a sustained, scalp-recorded “neurophonic”

potential that reflects phase-locked activity from a pop-

ulation of neural elements within the rostral brainstem

(for reviews, see Krishnan, 2007; Chandrasekaran and

Kraus, 2010; Skoe and Kraus, 2010). The response is
characterized by a periodic waveform that follows the

individual cycles of the evoking acoustic stimulus.

Given its latency (z7–10msec) and response character-

istics (e.g., limit of phase-locking), putative neural gen-

erator(s) of the FFR likely include the inferior colliculus

of the midbrain (Marsh et al, 1974; Smith et al, 1975;
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Sohmer et al, 1977). Unlike more transient evoked AEPs

(e.g., ABR, cortical P1-N1-P2), FFRs capture time-varying

spectrotemporal properties of auditory stimuli (Krishnan

et al, 2004; Bidelman andKrishnan, 2010) and, thus, offer
a unique window into the neural encoding of complex

sounds not afforded by traditional click responses. Indeed,

the remarkable fidelity of the FFR is evident by the fact

that the neural response to speech is intelligible when

replayed as an audio stimulus (Galbraith et al, 1995).

Given its level of detail, there is now considerable interest

in the response as a means to probe dynamic sound pro-

cessing at the level of the brainstem. Recent FFR studies,
for example, have investigated subcortical representa-

tions of linguistic pitch prosody (for review, see Krishnan

et al, 2012), melodic and harmonic aspects of music (for

review, see Bidelman, 2013), and timbral aspects of speech

and nonspeech sounds (Krishnan, 2002; Bidelman and

Krishnan, 2010; Strait et al, 2012; Bidelman et al, 2013).

These studies suggest that the FFR may offer a valuable

tool for understanding the early neural transcription of
behaviorally relevantauditory signalsnot affordedby tradi-

tional AEPs currently used clinically.

Recent studies have also demonstrated that brainstem

FFRs are sensitive to auditory experience, as the response

is differentially tuned dependent on a listener’s language

background (Krishnan and Gandour, 2009; Krishnan

et al, 2012) and musical training (Musacchia et al, 2007;

Wong et al, 2007; Bidelman et al, 2011). Experience-
dependent changes in FFR (e.g., enhanced magnitudes,

improved timing precision) have also been observed with

short-term perceptual learning (Song et al, 2008; Carcagno

and Plack, 2011). Collectively, these studies suggest that

FFRsmay offer an objective method to monitor brain plas-

ticity and behavioral improvements gained through audi-

tory training regimens (Chandrasekaran et al 2012; Song

et al, 2012; Skoe et al, 2013). Moreover, speech-evoked
brainstem responses are impaired in children with lan-

guage and learning disorders (Banai et al, 2007; Banai

et al, 2009; Basu et al, 2010; Rocha-Muniz et al, 2012)

despite normal click-ABRs (Song et al, 2006). These find-

ings imply that the FFR might offer important diagnostic

function not tapped by conventional audiologic evaluation.

Together, studies suggest that the FFR response is suit-

able for investigating the neural transcription of speech
and music, auditory processing disorders, and brain plas-

ticity at subcortical levels of processing. Yet, despite its

potential clinical and empiric usefulness, determining the

presence of a response is still dependent on the subjective

interpretation by an experimenter or clinician.

The primary aim herein was to develop and evaluate

a fully objective and automated algorithm for the detec-

tion of brainstem FFRs elicited by complex stimuli (e.g.,
speech). We exploit the remarkable fidelity of the FFR

and its ability to encode dynamic, spectrotemporal proper-

ties of acoustic stimuli. To this end, the current detection

algorithm was developed not on response time-waveform

inputs (as in the majority of automated methods) but

rather on response spectrograms. Spectrograms are

advantageous in that they provide a three-dimensional

representation of the neural activity (time, frequency,
amplitude) and, thus, a higher dimensionality of de-

tail than the two-dimensional time-waveform alone.

We adopt a well-known metric from information the-

ory, namely mutual information (MI), to quantify

spectral similarity between stimulus and FFR re-

sponses. MI is a well-established measure used in

image processing applications and in medical image

registration (e.g., aligning magnetic resonance images)
to compute the correspondence between images (for

review, see Pluim et al, 2003). Here, MI is used to

compute the similarity between stimulus and re-

sponse time-frequency representations (i.e., spectro-

graphic images), allowing us to quantify FFR quality

knowing only the input stimulus. To identify an ad-

equate criterion for use of MI as a detection metric,

we first validate the approach on simulated responses.
Model-generated FFRs allow us to fully control response

SNR and the presence/absence of the response that would

have to be estimated and/or subjectively determined in

actual evoked potential recordings. Parameterizing the

SNR of model FFRs allows us to empirically determine

a criterion threshold value for the detection metric under

consideration. Currently, the success of an objective algo-

rithm is evaluatedby comparing its performancewith “gold
standard” human ratings (e.g., Jeng et al, 2011b). In the

current study, determiningadetection criterion fromsimu-

lated data, rather than observer judgments, removes this

layer of subjective confirmation. Finally, we validate the

efficacy of theMI algorithm by assessing its ability to iden-

tify recorded FFRs (true biologic responses) from sham

recordings (containingnobiologic response).Wealso exam-

ine its potential as a stopping criterion for signal averaging,
with the goal of improving FFR recording efficiency.

METHODS

Participants and Overview of Original FFR Data

The evoked potential data herein represent a subsam-

ple of recordings (n 5 35) reported in our previous stud-
ies (Bidelman andKrishnan, 2010; Krishnan et al, 2010).

Specific participant demographics and electrophysiologic

recording protocols are reported in the original reports.

Briefly, participants were young adults (age range:

19–35 yr) who spoke American English. All were nonmu-

sicians (,3 yr musical training), were strongly right

handed (Oldfield, 1971), exhibited normal audiometric

hearing thresholds (i.e., #25 dB HL at octave frequen-
cies between 250–4000 Hz), and reported no history of

neurologic or psychiatric illness.

AEPs were originally recorded differentially using a

vertical montage with an electrode placed on the high-
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forehead at the hairline (zFpz; noninverting) referenced

to the right mastoid (A2; inverting reference). The evok-

ing stimulus was a 250 msec synthetic vowel token (/i/)

(Bidelman andKrishnan, 2010). The vowel consisted of a
time-varying fundamental frequency (F0), which rose

from 103–130 Hz for the duration of the stimulus and

four steady-state formant frequencies (F1 5 300 Hz,

F2 5 2500 Hz, F3 5 3500 Hz, F4 5 4530 Hz), held con-

stant. Stimuli were presented to the right ear usingER-3

insert earphones (80 dB SPL) at a rate of 2.76/sec. Con-

trol of the original experimental protocol was accom-

plished by the Tucker-Davis (System III) BioSig module
using a sampling rate of 24,414 Hz. Each response wave-

formrepresents anaverage of 3000artifact-free trials over

a 280msec acquisitionwindow.Response time-waveforms

were filtered between 70–3000 Hz (6 dB/octave rolloff) to

isolate the brainstem component of the EEG (Bidelman

et al, 2013). Complete details of the original FFR record-

ings can be found in Bidelman and Krishnan (2010).

Simulated FFR Responses from a

Computational Model

Model Description

We used a neurobiologically plausible computational
model of the auditory nerve (AN) (Zilany et al, 2009; Zilany

and Carney, 2010) to simulate brainstem FFRs (Dau,

2003). Thedetails of this phenomenologicmodel arebeyond

the scope of the present report and are reviewed only

briefly here. Essentially, the model takes an acoustic stim-

ulus time-waveform at its input and for a given AN fiber

with characteristic frequency (CF), outputs a realistic pat-

tern of action potentials (i.e., spike trains). The current
model represents the latest generationof awell-established

model rigorously tested against actual physiologic AN

responses to both simple and complex stimuli, including

tones, broadband noise, and speech-like sounds (Zilany

and Bruce, 2007). The model incorporates several impor-

tant nonlinearities observed in the auditory periphery,

including cochlear filtering, level-dependent gain (i.e., com-

pression) and bandwidth control, and long-term adapta-
tion, as well as two-tone suppression. Model tuning curves

were fit to the CF-dependent variation in threshold and

bandwidth for high-spontaneous rate fibers in normal-

hearing cats (Miller et al, 1997). The stochastic nature of

AN responses is accounted for by a modified nonhomoge-

nous Poisson process, which includes effects of both abso-

lute and relative refractory periods and captures themajor

stochastic properties of single-unit AN responses (e.g.,
Young and Barta, 1986).

Model FFR Generation

TheANmodel was used to simulate the scalp-recorded

FFR using methodology described by Dau (2003) (Fig.

1A). This approach is based on the assumption that

far-field event-related potentials (ERPs) recorded via

scalp electrodes can theoretically be estimated as the

convolution of an elementary unit waveform (i.e., im-
pulse response) with the instantaneous discharge rate

from a given auditory nucleus (Goldstein and Kiang,

1958; Dau, 2003). In the present implementation, 10 rep-

etitions of the vowel /i/ (Bidelman and Krishnan, 2010)

were used to evoke AN spike-trains. To realize the

evoked potential response, spikes were generated from

300 model fibers (CFs: 80–11,000 Hz) to simulate neural

activity distributed across the cochlear partition. Activ-
ity from the entire ensemble was then summed to form a

population discharge pattern (i.e., post-stimulus time

histogram [PSTH]) for the complete AN array. The

population PSTH was then convolved with a unitary

response function, simulating the impulse response of

nuclei within the auditory brainstem (for details, see

Dau, 2003). Pink noise (i.e., 1/f distribution) was then

added to simulate the spectral density of the inherent
random fluctuations in scalp-recorded EEG (Granzow

et al, 2001; Dau, 2003). The resulting model waveform

provides a mirror approximation of the spectrotemporal

characteristics of trueFFRpotentials recorded in human

listeners (Fig. 1B). Model FFRs provide an idealized

waveform to validate the performance of a detectionmet-

ric, as both the presence and quality (i.e., SNR) of the

responses are known a priori and can be parametrically
manipulated.

MI Detection Metric

For arbitrary inputs, MI is a dimensionless quantity

(measured in bits) that measures the degree of shared

information (i.e., mutual dependence) between two ran-
dom variables. Said differently, it reflects the amount of

information—or reduction in uncertainty—that know-

ing either variable provides about the other. More gen-

erally, for two random variables (A and B), MI is

computed according to Equation 1:

MI A;Bð Þ 5
X
a2A

X
b2B

p a; bð Þ log pða; bÞ
pðaÞpðbÞ

� �
ð1Þ

where p a; bð Þ is the joint probability ofA andB, and pðaÞ
and p bð Þ are the marginal probabilities of A and B,

respectively. In the specific case where A and B are

two images (e.g., spectrograms), MI can be interpreted

as the distance between the joint distribution of the

images’ grayscale pixel values p(a, b) and the joint dis-

tribution for two independent images, p(a)p(b). In other

words, MI computes the dependence or similarity be-
tween the two images (Pluim et al, 2003).

Basic properties of MI are worth noting: (i) MI 5 0 if

and only if A and B are independent, i.e., they share no

commonality; (ii) MI is strictly positive (i.e., MI $0);

and (iii) MI is symmetric [i.e., MI A;Bð Þ 5 MI B;Að Þ].
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Intuitively, properties (i–ii) suggest that if a response

spectrogram is entirely noise,MIwill approach 0whereas

a robust response will tend to converge with the stimulus

spectrogram, producing large positive values forMI.Prop-

erty (iii) ensures that the MI computed between stimulus
and response spectrograms is identical to that computed

between the response and stimulus spectrograms (i.e.,

commutative property).

MI threshold Determination and Validation

Conceptually, MI was used in the present study

to quantify the similarity between spectrograms of
brainstem responses and that of the evoking acoustic

stimulus. Thus, we compute the degree to which neu-

ral responses capture the collective dynamic, time-

frequency characteristics of the stimulus. Model FFRs

(see Figure 1B)were generatedwith SNRs between125

and –25 dB (5 dB steps) by systematically adding broad-

band noise to themodel waveform (Fig. 2). Additionally,

clean (1‘ SNR) and 100% noise (–‘ SNR) responses
were included to compute the upper and lower bound

of the MI metric, respectively. Using model responses

allowed us to simulate an evoked FFR at known SNRs,

which would be impossible to accomplish with actual

neurophysiologic recordings. Spectrograms were then

computed for the stimulus and a given response and

converted to grayscale images. Spectrograms were com-

puted using the “spectrogram” routine in MATLAB
2013 (The MathWorks). This routine computed a 214

point FFT in consecutive 50 msec segments (Hamming

windowed) computed every 3 msec. Time waveforms

were zero-padded to minimize edge effects and ensure

that spectrograms ran to the end of the signal’s dura-

tion. Identical parameters were used to compute both

the stimulus and response spectrograms.

The information captured in the time-frequency char-
acteristics of the FFR is limited (biologically) only by the

rolloff of phase-locking at the level of the brainstem

(,2000 Hz) (Liu et al, 2006). Thus, spectrogram images

were limited to a frequency span of 2000 Hz in order to

mimic this neurobiologic limit; spectral content beyond

this range does not contain stimulus-related, time-locked

neural energy and, thus, only adds noise to the spectro-

graphic representation. MI was computed according to
Equation 1 between the stimulus and each response

spectrogram, allowingus to assess the change in themet-

ric as a function of response SNR.

Figure 1. Computational model architecture used to simulate scalp-recorded FFRs. (A) The acoustic stimulus is input to a biologically
plausible model of the auditory periphery (Zilany et al, 2009). The model provides a simulated realization of the neural discharge pattern
for single AN fibers. After middle-ear filtering and hair cell transduction and filtering, action potentials are generated according to a
nonhomogeneous Poisson process. Spikes were generated from 300 model fibers (CFs: 80–11,000 Hz) to simulate neural activity across
the cochlear partition and summed to form a population discharge pattern (i.e., PSTH) for the entire AN array. Population PSTHs were
then convolvedwith a unitary response function that simulates the impulse response of nuclei within the auditory brainstem (Dau, 2003).
Additive noise then simulates the inherent random fluctuations in the scalp-recorded evoked potentials. (B) Comparison of model and
actual FFRs recorded in human listeners (n 5 35 ears; Bidelman and Krishnan, 2010; Krishnan et al, 2010). Note the remarkable sim-
ilarity in the temporal phase-locking characteristics between actual and model data. Amplitude scale bars 5 0.5 mV.
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Importantly, wemade no a priori assumptions regard-

ing the resulting values of MI or an acceptable threshold

for its use as a detectionmetric. To determine one empir-

ically, an MI corresponding to a response of 13 dB SNR

was taken as a criterion value (uMI). Similar objective cri-

teria (i.e., response power$ twice power of surrounding

noise) have been applied to other physiologic responses

used in audiologic testing (e.g., otoacoustic emissions;
Janssen and Müller, 2008). All processing and analyses

were performed in MATLAB.

uMI Validation and Classifier Performance on

Human FFR Data

uMI for Response Classification

Once determined empirically, uMI was applied as a

binary classifier to previously recorded FFR responses

obtained in n 5 35 listeners (Bidelman and Krishnan,

2010; Krishnan et al, 2010). Additional sham recordings

(n 5 20) were used to assess the classifier’s false-positive

and misclassification rates. Sham recordings were identi-

cal toFFR recordings (e.g., BidelmanandKrishnan, 2010)

with the exception that in those runs, the headphone was
removed from the ear, thus preventing stimulus delivery

to the participant but allowing the continued recording of

EEG noise. Recordings yielding MI $uMI were classified

as neural responses, whereas recordings with MI ,uMI

were considered to be noise (i.e., no response). Classi-

fier performance was evaluated by computing standard

metrics used in signal detection theory (d9) and receiver
operating characteristics (ROC), e.g., sensitivity and

specificity. True-positive rate (i.e., sensitivity) was

computed as the percentage of actual FFR recordings

correctly identified by the metric; false-positive rate

was computed as the percentage of sham recordings

erroneously classified as a response. Test specificity

was computed as 1 – false positive rate.

uMI as a Criterion for Determining an Adequate

Number of ERP Trials

In addition to detection, an objective metric should be

suitable as a stopping criterion for signal averaging. To test

the efficacy of uMI in this application, we applied themetric

to a second set of FFRdata containing 2,000–3,000 individ-

ual trial epochs (Bidelman et al, 2013). MI was computed,
as above, between the running ERP average response

and stimulus spectrograms as each additional sweep

was included in the average evoked potential. This al-

lowed us to trace the growth of MI as a function of the

trials contributing to the measured response and de-

termine an appropriate stopping criterion to detect the

brainstem FFR.

Classification Based on Human Observers

Current practice in evoked potential audiometry typ-

ically involves that the presence or absence of a neural

response be determined by the subjective interpretation

of a human observer. To compare this “gold standard”

with the proposed objectiveMI algorithm, we asked three

human observers to identify true biologic FFR responses
in a closed set identification task. Each observer was well

trained in the recording and analysis of AEPs and had

extensive experience with the identification and interpre-

tation of brainstem FFRs. Observers were shown a set of

55 spectrograms (e.g., Figure 2), 35 of which reflected time-

frequency plots of true FFR responses (Bidelman and

Krishnan, 2010; Krishnan et al, 2010) and 25 sham re-

cordings, presented in random order. Althoughmore infor-
mation is usually available to judge responses (e.g.,

time-waveforms, replications, etc.), observerswere required

to make their decision based solely on spectrograms. This

step ensured that human raters were given identical in-

formation as supplied to the MI algorithm. On each trial,

observersviewedan imageof a single spectrogramandwere

asked to record whether they believed that image repre-

sented a true response. As with the objective method, sen-
sitivityandspecificity (1– falsepositive rate)werecomputed

for each observer by calculating the percentage of FFR spec-

trograms correctly identified as responses (hits5FFR spec-

trogram classified as a neural response) and the number of

Figure 2. Model responses as a function of SNR. Varying-
response SNR was used to determine an acceptable threshold
for the detection metric empirically. Panels show model FFR
response spectrograms evoked by a 250 msec synthetic version
of the vowel /i/. Note the clear band of response energy near the
voice F0 frequency (z100 Hz) and its integer-related harmonics.
The decay in spectral amplitude abovez500 Hz reflects the rolloff
of phase-lockingwithin the brainstem,which acts as a quasi-lowpass
filter. Broadband noise was systematically added to the clean-model
FFR to yield a continuum of identical responses that differed only
by a knownSNR. SNRs of1‘ and –‘ represent tokenswith 0% (i.e.,
clean) and 100% noise, respectively.
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sham noise spectrograms incorrectly labeled as an FFR

response (false alarms).

RESULTS

MI computed from model FFRs are shown as a func-

tion of response SNR in Figure 3. MI decreased

monotonically from z1.3 to z0.3 bits with progressively

noisier responses. Given the idealized nature of the simu-

lated model waveforms, these values can be taken to

represent the ceiling and noise floor of the metric,

respectively, with an overall dynamic range of z1 bit.
As is shown in Figure 3, the point along the function cor-

responding to a response with13 dB SNR corresponds to

anMI ofz1. Whereas lower values still enable the detect-

ability of a response, a 13 dB criterion represents a con-

servative threshold and one commonly applied in the

literature to other physiologic data. For convenience,

we adopt anMI5 1 as the criterion threshold for detecting

the presence of a neural response. This empirically deter-
mined threshold (i.e., uMI5 1) was subsequently used as a

binary classifier for identifying true biologic responses

from sham recordings.

Figure 4 showsMI computed from actual FFR record-

ings (Bidelman and Krishnan, 2010; Krishnan et al,

2010) as well as sham recordings—containing no bio-

logic response. The uMI 5 1 criterion is denoted by the

shaded region. Values exceeding this threshold are pre-
dicted to be true responses. Of the n 5 55 total observa-

tions (n 5 35 FFR versus n 5 20 shams), only four

recordings (7.3%) aremisclassified. Responses are highly

distinguishable from their sham counterparts based

on MI (Fig. 4B). Average MI for true responses was

1.12 6 0.06 bits, whereas MI of sham recordings was

0.93 6 0.05 bits. An independent-samples t-test (two-

tailed) revealed a significant difference in MI computed

from responses relative to sham recordings [t53 5 11.21,

p , 0.001].

Classifier performance for common signal detection
and classification metrics is given in Table 1 and ROC,

in Figure 5. Overall, the MI metric yielded 93% accuracy

(7% misclassification) with a corresponding sensitivity

and specificity of 97% and 85%, respectively. In com-

parison, the subjective judgments of trained human

observers achieved, on average, only 75% accuracy (25%

misclassification). These values are corroborated by the

metric’s overall sensitivity, which was notably larger
(d9 5 2.94) compared with that of human observers

(d9 5 1.39). Response bias for the MI metric was slightly

larger (c5 –0.43) relative to human judgments, who were

largely unbiased in their decisions (c 5 –0.03).

Figure 6 shows the time-course of MI with increasing

number of trials contributing to the ERP signal aver-

age. As denoted by the exponential fits, MI tends to

grow monotonically with additional trials and asymp-
totes as the running average stabilizes. The function’s

break point (i.e., time-constant) provides an estimate

of the rate of growth in MI and corresponds roughly

to where the function exceeds the criterion threshold

(uMI 5 1). The probability density function for MI rate

of growth is shown in the figure’s inset. Across record-

ings, uMI is reached by z1500–2000 sweeps, indicating

that the brainstem FFR can be adequately detected in
this number of trials.

DISCUSSION

The current work presents a novel algorithm for an

objective identification of brainstemFFR responses.

The metric, based on the MI between neural responses

and stimulus spectrograms, assesses the degree towhich
the evoked potential carries information of the eliciting

acoustic signal. A threshold criterion for MI (uMI 5 1)—

corresponding to a signal SNRof13dB—wasdetermined

empirically from a training set of model (simulated)

data and then was validated on a larger test set of

actual data recorded from normal-hearing listeners.

The metric’s performance was determined by how well

it segregated true biologic responses from sham noise
recordings containing only EEG noise. Overall, the pro-

posed metric achieved superior performance, yielding

.90% accuracy and equally impressive sensitivity and

specificity (97% and 85%, respectively). This level of

performance represents a considerable improvement

from typical “gold standard” visual waveform inspection

because trained human observers achieved, on average,

only 75% accuracy in identifying responses based on
their subjective interpretation of FFR spectrograms

(Table 1). Lastly, it was shown that MI metric increases

monotonically with an increasing number of stimulus

presentations (i.e., trials). uMI was achieved in z1500

Figure 3. MI as a function of response SNR. MI was computed
between the spectrograms of model FFRs (see Fig. 1) and their cor-
responding input stimulus to quantify the similarity in time-
frequency representations. MI measures the degree to which
evoked responses preserve the spectrotemporal properties of the
evoking acoustic stimulus. Higher values indicate that brain
responses preservemore acoustic features of the evoking stimulus.
MI increases monotonically with increasing response SNR. The
MI (uMI) at which responses contained 13 dB SNR (dotted lines)
was taken as a criterion threshold for reliably detecting the pres-
ence of an FFR response.
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trials, indicating that brainstem FFR responses are

detectable with adequate SNR within a few thousand
stimulus sweeps. Thus, the metric may provide an ob-

jective criterion to terminate signal averaging, thereby

saving valuable time in research and clinical EEG

recordings.

It is worth noting potential limitations of the current

metric. The negative, albeit small, bias in the objective

metric (Table 1) indicates that it had a slight tendency

toward false alarms. That is, sham recordings were
sometimes classified as true responses (e.g., Figure

4A). However, we note that this bias is likely negligible

in light of the metric’s overall low misclassification

rate (7.3%) and high accuracy (93%). The considerable

improvement in detection performance of the objective

method versus human observers suggests that some

bias is tolerable in favor of its superior, automated

detection ability.

MI as a Monitor of ERP Signal Quality

Normal intraparticipant variability in scalp-recording

potentials, recording parameters (e.g., electrode im-

pedance and placement), and subject factors (e.g., at-

tentional state, body temperature) all contribute to a

variation in brainstem response morphology. Thus,
one of the fundamental issues in interpreting evoked

potential recordings is that one can never truly be sure,

with absolute certainty, whether the average waveform

represents an actual response or merely some portion of

residual background noise (Picton et al, 1983). SNR can

be estimated by comparing signal amplitude after the

time-locking event with amplitude within the prestimu-

lus baseline, or via the residual between two averaging
buffers (i.e., split-buffer or6 averaging). However, even

these objective measures of SNR are difficult to measure

and are plagued by the requirement of separately esti-

mating “signal” and “noise” components, which can be

difficult to partition. The proposed MI metric helps cir-
cumvent these issues in that it does not make a priori

assumptions regarding whether poststimulus activity

is “signal” or “noise” per se. Instead, the mutual corre-

spondence between all of the stimulus and response

areas are considered and signal quality is determined

statistically.

Variation in MI among participants was well below

the variation between recording classes, allowing adequate
segregation of true responses from sham recordings (Fig.

4B). Yet, although themetric was used here as a successful

all-or-nothing binary classifier, it should be noted that the

measure is not entirely homogeneous across all listeners

(e.g., Figure 4); the responseMI ranged fromz1.0–1.3 bits.

Slight disparity is expected in any classifier or diagnostic

test and is likely attributable to inherent differences in

ERP SNR. These differences could, for example, manifest
with slight discrepancies in the number of trials, sensation

Table 1. Classifier Performance Characteristics*

MI Algorithm† Human Observers‡

Overall Performance

Accuracy (%) 92.7 75.7 (32.5)

Misclassification Rate (%) 7.3 24.3 (32.5)

Signal Detection Metrics

d9§ 2.94 1.39

Bias** 20.43 20.03

ROC

Sensitivity (%) 97.1 76.2 (28.9)

Specificity (%) 85 75 (39.1)

*n 5 55 total observations (n 5 35 neural FFR versus n 5 20 sham

noise recordings).
†Based on MI 5 1.
‡Mean (SD) of n 5 3 trained observers.

§Computed as d’ 5 z(H) - z(FA) from mean hit (H) and false alarm

(FA) rates.

**Computed as bias 5 –[z(H) 1 z(FA)]/2 from mean H and FA rates.

Figure 4. MI classifier performance distinguishing true brainstem FFRs from sham recordings. (A) MI computed from FFRs
recorded from n5 35 listeners (Bidelman and Krishnan, 2010; Krishnan et al, 2010) (circles) and n5 20 sham recordings (triangles),
in which the earphone was removed from the ear canal (i.e., no stimulus was presented). MI values below the empirically derived
threshold value (uMI 5 1; shaded region), are classified as noise (i.e., no response); values exceeding uMI 5 1 are identified as true
biologic responses. Misclassifications are shown as open symbols. (B) Average MI computed from true versus sham recordings. As
denoted by the clear separation of recordings, the MI metric is robust in distinguishing actual evoked responses from EEG noise.
Error bars 5 1 s.e.m.; ***p , 0.001.
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level of the stimulus, electrode contact impedance, andarti-

fact specific to individual recordings. Nevertheless, the

well-defined relationship between stimulus-to-response

MI and signal SNR (Fig. 3) suggests that it may serve

not only as a detection criterion, but also as a means to

quantify signal quality for individual subjects. Moreover,

applying the metric as an “online” threshold (Fig. 6), we
demonstrate its potential as a stopping criterion for signal

averaging. Brainstem FFRs elicited by dynamic speech

sounds were detected in z1500 sweeps with sufficient

SNR (i.e., 13dB). Whereas brainstem responses evoked

by other types of stimuli and presentation levels may

require additional stimulus sweeps and signal averaging,

using MI as a real-time monitor of signal quality could be

used to maximize the efficiency of recording time.

Comparison with Other Objective Metrics

It is worth comparing the current measure with other

automated detection algorithms used in electrophysio-

logic testing. Our MI metric bears resemblance to the

Fsp statistic first introduced by Elberling and Don

(1984) and applied to the detection of click-ABRs. How-
ever, unlikeFsp, which is a statistical ratio between signal

and noise variance, MI is a measure of probability (i.e.,

commonality) between the stimulus and response spectro-

graphic images. In this regard, our metric is somewhat

akin to a stimulus-to-response correlation, in which Pear-

son’s r is computed between ERP averages held in multi-

ple response buffers or between subaverages taken from

blocks of trials. The higher the r, the more likely the pres-
ence of a response as only the deterministic signal (i.e.,

ERP) replicates across trials; EEG noise is presumed to

not correlate from trial to trial, although this later

assumption can be easily violated (e.g., blinks time-locked

to the stimulus presentation). These strict correlations

are typically inappropriate in the analysis of sustained

neurophysiologic responses such as the FFR. Given its
periodic nature, small amounts of latency jitter between

the neural response and the evoking stimulus can yield

artificially low correlations1. Hence, we deliberately

avoided correlational measures in the present work.

Moreover, MI is preferred versus (cross-) correlation

as it captures all dependencies between the stimulus

and response rather than only second-order ones, aswith

correlation/covariance (Wang et al, 2010).
The difficulty in finding an appropriate detection

metric for FFRs is complicated by the fact that there

is no uniform evoking stimulus for the response. The

potential can be elicited by any sustained, complex

sound (for examples, see Krishnan, 2007; Skoe and

Figure 6. MI increases with the number of sweeps contributing
to the evoked potential average. MI was computed between the
evoking stimulus and corresponding FFR response for each new
epoch added to the running average (thin solid lines). FFR data
represent responses evoked by a 100 msec vowel /u/ presented
at 83 dB SPL as originally reported in Bidelman et al (2013).
MI increases monotonically, modeled as exponential growth, with
additional averaging (dotted lines), consistent with the increase in
response SNR with additional trials. Across a sample of n 5 5 lis-
teners, MI exceeds the criterion detection threshold (uMI 5 1) in
z1,500–2,000 sweeps, as denoted by the probability density func-
tion (inset). The monotonic increase of MI and the asymptotic
nature of the metric indicate it can be used as stopping criteria
for ERP averaging.

Figure 5. ROC space for theMI classifier. Individual points denote
the true-positive (i.e., sensitivity) and false-positive (i.e., 1 – specific-
ity) rates for various values of uMI. The dotted line corresponds with
chance performance (i.e., d9 5 0). With the empirically determined
value of uMI 5 1 adopted here, the MI classifier achieves a d9 5
2.94 and a sensitivity and specificity of 97.1% and 85%, respectively.

1The faulty nature of simple stimulus-to-response correlations is
illustrated in the following exercise. Consider, two sinusoids (y1 and y2) with
identical amplitude (A) and frequency (f ) differing only by a small phase
discrepancy (u) [i.e., y15Asin(2pf ) and y25Asin(2pf 1 u)]. For f 5
100 Hz, if we set the phase u to equal to the approximate transmission
delay of the brainstem FFR (z8 msec), the corresponding phase shift is
252�. Assuming y1 and y2 represent the stimulus and elicited FFR wave-
forms, the resulting Pearson’s correlation (r) between these two signals
amounts to a mere r 5 0.3. Thus, despite the fact that the response iden-
tically mirrors the stimulus (i.e., a “perfect response”), correlation proves to
be an inadequate measure of this correspondence. To mitigate such dis-
crepancies, a cross-correlation approach can be used where stimulus-
to-response similarity is computed as a running function of the time-lag
between the two waveforms (Galbraith and Brown, 1990).
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Kraus, 2010). To date, the majority of FFR studies have

used the response as a neural index of voice pitch pro-

cessing. The overwhelming focus of much of this work

has investigated brainstem encoding of linguistic pitch
patterns as found in tonal languages of the world (e.g.,

Mandarin Chinese and Thai;Wong et al, 2007; Krishnan

andGandour, 2009;Krishnan et al, 2010; Bidelman et al,

2011; Krishnan et al, 2012). Indeed, the “following”

nature of the response can provide an objective measure

of how well the brainstem tracks time-varying linguistic

and musical pitch patterns (Bidelman et al, 2011). With

this mind, Jeng et al (2011b) recently developed and
evaluated two novel algorithms for detecting human

FFRs to voice pitch. Stimuli consisted of the four lexical

tones of Mandarin Chinese that comprise level (Tone 1),

rising (Tone 2), dipping (Tone 3), and falling (Tone 4)

pitch contours. F0 was extracted from short-term auto-

correlation and narrow-band response spectrograms to

index temporal and spectral measures of pitch encod-

ing, respectively (e.g., see Bidelman and Krishnan,
2010). A series of metrics (e.g., pitch-tracking accuracy,

pitch-noise ratio) were used to quantify the mag-

nitude and degree to which brainstem responses

accurately captured the detail of each token’s F0 infor-

mation. Aggregated across stimuli and the fourmeasures

explored, the authors reported an average sensitivity/

specificity of 72/88% and 82/78% for temporal and spec-

tral pitch measures, respectively (see Table 1 and 2 of
Jeng et al, 2011b).

Thesemetricsmay be promising, but they are limited by

two factors. First, they assess the neural response to only a

single stimulus feature, namely, F0 (i.e., “pitch”). Although

applicable to lexical tones, suchmeasures (e.g., “pitch track-

ing accuracy”) are not as relevant for responses evoked

by speech stimuli of nontonal languages (e.g., English)

where pitch plays only a suprasegmental role. Thus, a
detectionmetric that only evaluates pitch processing alone

is likely to be of less diagnostic value than a metric that

captures more global response characteristics, as with

ourMI procedure. The inadequacy ofmeasuring only a sin-

gle response feature is also evident when considering the

metrics use as an online tool for signal averaging. In con-

sideration of a voice pitch detection metric alone, roughly

3,000–4,000 stimulus trials are needed to reach asymptotic
levels in performance and detect the speech-evoked FFR

(Jeng et al, 2011a). In contrast, our proposed MI metric,

which considers amultidimensional set of spectral features

(including those related to pitch), provides robust detection

of the speech-FFR in roughly half as many trials (Fig. 6).

Secondly, previous “objective” metrics have been validated

by comparing an algorithm’s classification to human judg-

ments (Jeng et al, 2011b). Unfortunately, associating a test
metric with a subjective interpretation reduces the impar-

tiality desired in a fully objective procedure (as noted by

Jeng et al, 2011b). Motivated by these inconsistencies,

we pursued a fully objective approach to the development

and validation of our MI detection metric. We empirically

determined a threshold criterion from simulated model

data with known response and SNR, thereby removing

the subjective confirmation of observer judgments. Taken
together, the larger generality and higher objectivity of

the proposed MI metric make it a robust method for

AEP evaluation.

CONCLUSIONS

A novel metric was developed to objectively detect
brainstem FFRs elicited by complex auditory

stimuli. The measure is based on the MI between the

spectrograms of the neural response and its eliciting

acoustic stimulus. An adequate threshold for response

detection was determined empirically based on simu-

latedmodel responses produced at known SNRs. Apply-

ing the criterion (uMI 5 1) as a decision metric, we show

that the algorithm achieves 93% accuracy in classify-
ing true FFR responses from sham recordings. ROC

test performance characteristics indicated a sensitivity

and specificity of 97% and 85%, respectively. We infer

that the MI between an acoustic stimulus and its corre-

sponding brainstem representation can provide a com-

pletely objective and robust method for automated FFR

detection. Application of the current metric to evoked

potential audiometry testing may provide clinicians
with a more robust tool to objectively evaluate the pres-

ence and quality of speech-evoked electrophysiologic

responses. The metric and its computation could be

easily incorporated into most commercially available

ABR/AEP systems similar to other statistical detection

metrics (e.g., Fsp). This objective index can also be used

to decrease valuable recording time in both research

and clinical settings by providing a termination rule for
ERP signal averaging.
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