X

Xiaohua Huang Publications (over 37,000 citations)

  1. Plasmonic couplings in Ag-Au heterodimers

    S. Gomrok, B.K. Eldridge, E.A. Chaffin, J.W. Barr, X. Huang, T.B. Hoang, and Y. Wang.
    J. Chem. Phys. 2024, 160, 144706
    https://pubs.aip.org/aip/jcp/article-abstract/160/14/144706/3282054


  2. Multiplexed surface protein detection and cancer classification using gap-enhanced magnetic-plasmonic core-shell Raman nanotags and machine learning algorithm

    A.L. Rodriguez-Nieves, M.L. Taylor, R.E. Wilson, B.K. Eldridge, S. Nawalage, A. Annamer, H. Miller, M. Alle, S. Gomrok, D. Zhang, Y. Wang, and X. Huang.
    ACS Appl. Mater. Interfaces 2024, 16(2), 2041-2057.
    https://pubs.acs.org/doi/10.1021/acsami.3c13921


  3. Nanomaterials for molecular detection and analysis of extracellular vesicles


    M.L. Taylor, A.G. Giacalone, K.D. Amrhein, R.E. Wilson, Y. Wang, and X. Huang.
    Nanomaterials
    2023, 13, 524. Review.
    https://www.mdpi.com/2079-4991/13/3/524 

  4. Dual imaging single vesicle surface protein profiling and early cancer detection

    K.D. Amrhein, M.L. Taylor, R.E. Wilson, C.E. Gallops, A. Annamer, V. Vinduska, E.A. Kwizera, H. Zhang, Y. Wang, T.B. Hoang, and X. Huang.
    ACS Appl. Mater. Interfaces 2023, 15(2), 2679-2692.
    https://pubs.acs.org/doi/10.1021/acsami.2c19235


  5. Gold nanorod-assisted photothermal therapy and improved strategies

    M.L. Taylor, R.E. Wilson Jr., K.D. Amrhein, and X. Huang.
    Bioe
    ngineering
    2022, 9, 200. Review.
    https://www.mdpi.com/2306-5354/9/5/200



  6. Exosomal surface protein detection with quantum dots and immunomagnetic capture for cancer detection

    V. Vinduska, C.E. Gallops, R. O'Connor, Y. Wang, and X. Huang.
    Nanomaterials 2021, 11, 1853.
    https://www.mdpi.com/2079-4991/11/7/1853


  7. Insights on the coupling of plasmonic nanoparticles from near-field spectra determined via discrete dipole approximations

    J.W. Barr, S. Gomrok, E. Chaffin, X. Huang, and Y. Wang.
    J. Phys. Chem. C 2021, 125, 5260-5268.
    https://pubs.acs.org/doi/10.1021/acs.jpcc.1c01071


  8. Immunomagnetic capture and multiplexed surface marker detection of circulating tumor cells with magnetic multicolor surface-enhanced Raman scattering nanotags

    R.E. Wilson, R. O'Connor, E.A. Kwizera, B. Nooroozi, C.E. Gallops, B. Morshed, Y. Wang, and X. Huang.
    ACS Appl. Mater. Interfaces 2020, 12, 47220-47232.
    https://pubs.acs.org/doi/10.1021/acsami.0c12395


  9. Plasmon- assisted random lasing from a single mode fiber tip

    D.S. Khatri, Y. Li, J. Chen, A.E. Stocks, E.A. Kwizera, X. Huang, C. Argyropoulos, and T. Hoang.
    Opt. Express 2020, 28(11), 16417-16426.
    https://opg.optica.org/oe/fulltext.cfm?uri=oe-28-11-16417&id=431834


  10. Small mode volume plasmonic film-coupled nanostar resonators

    N. Charchi, Y. Li, M. Huber, E.A. Kwizera, X. Huang, C. Argyropoulos, and T. Hoang.
    N
    anoscale Adv.
    2020, 2, 2397-2403.
    https://pubs.rsc.org/en/content/articlelanding/2020/na/d0na00262c


  11. Near-field and far-field optical properties of magnetic plasmonic core-shell nanoparticles with non-spherical shapes: A discrete dipole approximation study

    S. Bhardwaj, J. Barr, E. Chaffin, X. Huang, and Y. Wang.
    AIP Adv. 2019, 9, 025021.
    https://pubs.aip.org/aip/adv/article/9/2/025021/1075901/


  12. Ratiometric optical nanoprobes enable accurate molecular detection and imaging

    X. Huang, J. Song, X. Huang, Y. Xiong, and X. Chen.
    Chem. Soc. Re
    v.
    2018, 47, 2873-2920. Review. Citations: 578.
    https://pubs.rsc.org/en/content/articlelanding/2018/cs/c7cs00612h


  13. Molecular detection and analysis of exosomes using surface enhanced Raman scattering gold nanorods and a miniaturized device

    E.A. Kwizera, R. O'Connor, V. Vinduska, M. Wiliams, E.R. Butch, S.E. Snyder, X. Chen, and X. Huang.
    Theranostics 2018, 8(10), 2722-2738. Citations: 180.
    https://www.thno.org/v08p2722.htm


  14. A synthetic disaccharide derivative of diphyllin, TAARD, activates human natural killer cells to secrete interferon-gamma via toll-like receptor-medicated NF-kB and STAT3 signalling pathways

    L. Yi, L. Chen, X. Guo, T. Lu, H. Wang, X. Ji, J. Zhang, Y. Ren, P. Pan, A.D. Kinghorn, X. Huang, L.S. Wang, Z. Fan, M.A. Caligiuri, J. Yu.
    Front Immunol. 2018, 9, 1509.
    https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2018.01509/full


  15. Synthesis and properties of magnetic-optical core-shell nanoparticles

    E.A. Kwizera, E. Chaffin, Y. Wang, and X. Huang.
    RSC
    Adv. 2017, 7, 17137-17153. Review.
    https://pubs.rsc.org/en/content/articlelanding/2017/ra/c7ra01224a


  16. Gold nanoparticle based platforms for circulating cancer marker detection

    X. Huang, R. O'Connor, and E.A. Kwizera.
    Nanotheranostics 2017, 1(1), 80-102. Review.
    https://www.ntno.org/v01p0080.htm


  17. Dependence of SERS enhancement on the chemical composition and structure of Ag/Au hybrid nanoparticles

    E. Chaffin, R. O'Connor, J. Barr, X. Huang, and Y. Wang.
    J. Chem. Phys. 2016, 145, 054706.
    https://pubs.aip.org/aip/jcp/article/145/5/054706/316487


  18. Size- and shape-controlled synthesis and properties of magnetic-plasmonic core-shell nanoparticles

    E.A. Kwizera, E. Chaffin, X. Shen, J. Chen, Q. Zou, Z. Wu, Z. Gai, S. Bhana, R. O'Connor, L. Wang, H. Adhikari, S.R. Mishra, Y. Wang, and X. Huang.
    J. Phys. Chem. C 2016, 120, 10530-10546. Citations: 105.
    https://pubs.acs.org/doi/10.1021/acs.jpcc.6b00875


  19. Photosensitizer-loaded gold nanorods for near infrared photodynamic and photothermal cancer therapy

    S. Bhana, R. O'Connor, J. Johnson, J.D. Ziebarth, L. Henderson, and X. Huang.
    J. Colloid. Interface Sci. 2016, 469, 8-16.
    https://www.sciencedirect.com/science/article/pii/S0021979716300911


  20. Nanotechnology for enrichment and detection of circulating tumor cells

    S. Bhana, Y. Wang, and X. Huang.
    Nanomedicine (Lond.) 2015, 10(12), 1973-1990. Review.
    https://www.futuremedicine.com/doi/10.2217/nnm.15.32


  21. Near infrared-absorbing gold nanopopcorns with iron oxide cluster core for magnetically amplified photothermal and photodynamic cancer therapy

    S. Bhana, G. Liu, L. Wang, H. Starring, S.R. Mishra, G. Liu, and X. Huang.
    ACS Appl. Mater. Interfaces 2015, 7, 11637-11647. Citations: 119.
    https://pubs.acs.org/doi/10.1021/acsami.5b02741


  22. Dielectric properties and magnetoresistance behavior of polyaniline coated carbon fabrics

    B. Qiu, J. Guo, Y. Wang, X. Wei, Q. Wang, D. Sun, M.A. Khan, D.P. Young, R. O'Connor, X. Huang, X. Zhang, B.L. Weeks, S. Wei, and Z. Guo.
    J.
    Mater. Chem. C 2015, 3, 3989-3998.
    https://pubs.rsc.org/en/content/articlelanding/2015/tc/c4tc02578d

     
  23. Cr (VI) removal by magnetic carbon nanocomposites derived from cellulose at different carbonization temperatures

    B. Qiu, Y. Wang, D. Sun, Q. Wang, X. Zhang, B.L. Weeks, R. O'Connor, X. Huang, S. Wei, and Z. Guo. 
    J. Mater. Chem. A 2015, 3, 9817-9825.Citations: 126.
    https://pubs.rsc.org/en/content/articlelanding/2015/ta/c5ta01227a


  24. Multiwalled carbon nanotubes composited with palladium nanocatalysts for highly efficient ethanol oxidation

    Y. Wang, Q. He, J. Guo, H. Wei, S. Bhana, X. Huang, Z. Luo, T. Shen, K. Ding, S. Wei, and Z. Guo.
    J. Electrochem. Soc. 2015,
    162(7), F755-F763.
    https://iopscience.iop.org/article/10.1149/2.0751507jes


  25. Carboxyl multi-walled carbon nanotubes stabilized palladium nanocatalysts with improved methanol oxidation reaction

    Y. Wang, Q. He, J. Guo, H. Wei, S. Bhana, X. Huang, Z. Luo, T. Shen, K. Ding, S. Wei, and Z. Guo.
    ChemElectroChem. 2015, 2(4), 559-570.
    https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/celc.201402378


  26. Electropolymeriized polypyrrole nanocoatings on carbon paper for electrochemical energy storage

    H. Wei, Y. Wang, J. Guo, X. Yan, R. O'Connor, X. Zhang, N.Z. Shen, B.L. Weeks, X. Huang, S. Wei, and Z. Guo.
    ChemElectroChem. 2015, 2(1), 119-126.
    https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/celc.201402258


  27. Integration of nanostructured dielectrophoretic device and surface enhanced Raman probe for highly sensitive rapid bacteria detection

    F.R. Madiyar, S. Bhana, L. Swisher, C. Culbertson, X. Huang, and J. Li.
    Nanoscale 2015, 7, 3726-3736. Citations: 107.
    https://pubs.rsc.org/en/content/articlelanding/2015/nr/c4nr07183b


  28. Impact of core dielectric properties on the localized surface plasmonic spectra of gold-coated magnetic core–shell nanoparticles

    E. Chaffin, S. Bhana, R.T. O'Connor, X. Huang, and Y. Wang.
    J. Phys. Chem. B 2014, 118(49), 14076-14084.
    https://pubs.acs.org/doi/10.1021/jp505202k


  29. Magnetic graphene oxide nanocomposites: nanoparticles growth mechanism and property analysis

    Y. Wang, Q. He, H. Qu, X. Zhang, J. Guo, J. Zhu, G. Zhao, H.A. Colorado, J. Yu, L. Sun, S. Bhana,  M.A. Khan, X. Huang, D.P. Young, H. Wang, X. Wang, S. Wei, and Z. Guo. 
    J. Mater. Chem. C 2014, 2, 9478-9488. Citations: 112.
    https://pubs.rsc.org/en/content/articlelanding/2014/tc/c4tc01351d


  30. Synergistic interactions between activated carbon fabric and toxic hexavalent chromium

    C. Xu, B. Qiu, X. Yan, H. Wei,  X. Huang, Y. Wang, D. Rutman, D. Cao, S. Bhaba, S. Wei, and Z. Guo.
    ECS J. Solid State Sci. Technol. 2014, 3, M1-M9.
    https://iopscience.iop.org/article/10.1149/2.004403jss


  31. Capture and detection of cancer cells in whole blood with magnetic-optical nanoovals

    S. Bhana, E. Chaffin, Y. Wang, S.R. Mishra, and X. Huang.
    Nanomedicine (Lond.)2014, 9(5), 593-606.
    https://www.futuremedicine.com/doi/10.2217/nnm.13.77


  32. Gold nanorods carrying paclitaxel for photothermal-chemotherapy of cancer

    F. Ren, S. Bhana, D.D. Norman, J. Johnson, L. Xu, D.L. Baker, A.L. Parrill, and X. Huang. 
    Bioconjugate Chem. 2013, 24, 376-386. Citations: 130.
    https://pubs.acs.org/doi/10.1021/bc300442d


  33. Synthesis and properties of near infrared-absorbing magnetic-optical nanopins

    S. Bhana, B.K. Rai, S.R. Mishra, Y. Wang, and X. Huang. 
    Nanoscale 2012, 4, 4939-4942.
    https://pubs.rsc.org/en/content/articlelanding/2012/nr/c2nr31291c


  34. The golden age: gold nanoparticles for biomedicine

    E.C. Dreaden, A.M. Alkilany, X. Huang, C.J. Murphy, and M.A. El-Sayed.
    Chem. Soc. Rev. 2012, 41, 2740-2779. Review. Citations: 3738.
    https://pubs.rsc.org/en/content/articlelanding/2012/cs/c1cs15237h


  35. Beating cancer in multiple ways using nanogold

    E.C. Dreaden, M.A. Mackey, X. Huang, B. Kang, and M.A. El-Sayed.
    Chem. Soc. Rev. 2011, 40, 3391-3404. Review. Citations: 691.
    https://pubs.rsc.org/en/content/articlelanding/2011/cs/c0cs00180e


  36. Plasmonic photo-thermal therapy (PPTT)

    X. Huang and M.A. El-Sayed.
    Alexandria J. Med. 2011, 47, 1-9. Review. Citations: 511
    .
    https://link.springer.com/article/10.1007/s10103-007-0470-x


  37. A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands

    X. Huang, X. Peng, Y. Wang, Y. Wang, D.M. Shin, M.A. El-Sayed, and S. Nie.
    ACS Nano 2010, 4(10), 5887-5896. Citations: 485.
    https://pubs.acs.org/doi/10.1021/nn102055s


  38. Comparative studies of photothermolysis of cancer cells with nuclear-targeted or cytoplasm-targeted gold nanospheres: continuous wave or pulsed lasers

    X. Huang, B. Kang, W. Qian, P.C. Chen, A.K. Oyelere, and M.A. El-Sayed.
    J. Biomed. Opt. 2010,15(5), 058002/1-7. Citations: 134.
    https://www.spiedigitallibrary.org/journals/journal-of-biomedical-optics/volume-15/issue-05/058002/Comparative-study-of-photothermolysis-of-cancer-cells-with-nuclear-targeted/10.1117/1.3486538.full


    Before The University of Memphis: 

  39. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy

    X. Huang and M.A. El-Sayed.
    J. Adv. Res. 2010, 1, 13-28. Review. Citations: 2342.
    https://www.futuremedicine.com/doi/10.2217/17435889.2.5.681


  40. Dark-field light scattering imaging of living cancer cell component from birth to division using bioconjugated gold nanoprobes

    W. Qian, X. Huang, B. Kang, and M.A. El-Sayed.
    J. Biomed. Opt. 2010, 15(4), 046025/1-9. Citations: 110.
    https://www.spiedigitallibrary.org/journals/journal-of-biomedical-optics/volume-15/issue-04/046025/Dark-field-light-scattering-imaging-of-living-cancer-cell-component/10.1117/1.3477179.full


  41. Gold nanorods: from synthesis and properties to biological and biomedical applications

    X. Huang, S. Neretina, and M.A. El-Sayed.
    Adv. Mater. 2009, 21 (48), 4880-4910. Review. Citations: 2157.
    https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.200802789


  42. Gold nanoparticles surface plasmon field effects on the proton pump process of the bacteriorhodopsin photosynthesis

    A. Biesso, W. Qian, X. Huang, and M.A. El-Sayed.
    J. Am. Chem. Soc. 2009, 131(7), 2442-2443.
    https://pubs.acs.org/doi/10.1021/ja8088873


  43. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of HSC-3 tumors in mice

    E.B. Dickerson, E.C. Dreaden, X. Huang (co-first author), H. Chu, S. Pushpanketh, J.F. McDonald, and M.A. El-Sayed.
    Cancer Lett. 2008, 269, 57-66. Citations: 1330.
    https://www.sciencedirect.com/science/article/pii/S030438350800325X?via%3Dihub


  44. Noble Metals on the Nanoscale: Optical and Photothermal Properties and Applications in Imaging, Sensing, Biology, and Medicine

    P.K. Jain, X. Huang, I.H. El-Sayed, and M.A. El-Sayed.
    Acc. Chem. Res. 2008, 41(12), 1578-1586. Review. Citations: 4597.
    https://pubs.acs.org/doi/10.1021/ar7002804


  45. Plasmonic photothermal therapy using gold nanoparticles

    X. Huang, P.K. Jain, I.H. El-Sayed, and M.A. El-Sayed. 
    Lasers Med. Sci. 2008, 23(3), 217-228. Review. Citations: 2659.
    https://link.springer.com/article/10.1007/s10103-007-0470-x


  46. Multicolorimetric plasmonic gold nanoparticles for optical detection of oral squamous carcinoma

    I.H. El-Sayed, X. Huang, and M. A. El-Sayed. 
    Oral Oncol. 2007, 2, 121-121.
    https://www.sciencedirect.com/journal/oral-oncology-supplement/vol/2?page-size=100&page=3


  47. The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy

    X. Huang, W. Qian, I.H. El-Sayed, and M.A. El-Sayed.
    Lasers Surg. Med. 2007, 39, 747-753. Citations: 328.
    https://onlinelibrary.wiley.com/doi/10.1002/lsm.20577


  48. Effect of plasmonic gold nanoparticles on benign and malignant cellular goldtofluorescence: a novel probe for fluorescence based detection of cancer

    I.H. El-Sayed, X. Huang, F. Macheret, and R. Kramer.
    Technol. Cancer Res. Treat. 2007, 6(5), 403-412.
    https://journals.sagepub.com/doi/10.1177/153303460700600505


  49. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy

    X. Huang, P.K. Jain, I.H. El-Sayed, and M.A. El-Sayed.
    Nanomedicine (Lond.) 2007, 2(5), 681-693. Review. Citations: 1735.
    https://www.futuremedicine.com/doi/10.2217/17435889.2.5.681


  50. Peptide conjugated gold nanorods for nuclear targeting

    A.K. Oyelere, P.C. Chen, X. Huang, I.H. El-Sayed, and M.A. El-Sayed.
    Bioconjugate Chem. 2007, 18, 1490-1497. Citations: 425.
    https://pubs.acs.org/doi/10.1021/bc070132i


  51. Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp and polarized surface raman spectra: a potential cancer diagnostic marker

    X. Huang, I.H. El-Sayed, W. Qian, and M.A. El-Sayed.
    Nano Lett. 2007, 7(6), 1591-1597. Citations: 635.
    https://pubs.acs.org/doi/10.1021/nl070472c


  52. Review of some surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems

    P.K. Jain, X. Huang, I.H. El-Sayed, and M.A. El-Sayed.
    Plasmonics 2007,2, 107-118. Review. .Citations: 1564.
    https://link.springer.com/article/10.1007/s11468-007-9031-1


  53. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods

    X. Huang, I.H. El-Sayed, W. Qian, and M.A. El-Sayed. J. Am. Chem. Soc. 2006, 128 (6), 2115-2120. Reported by Science Watch. ACS hot paper. #1 citation in Chemistry during period of Sept-Oct 2007. Evaluated as a priority paper by Nanomedicine. Citations: 6116.
    https://pubs.acs.org/doi/10.1021/ja057254a


  54. Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles

    X. Huang, P.K. Jain, I.H. El-Sayed, and M.A. El-Sayed.
    Photochem. Photobiol. 2006,  82 (2), 412-417. Citations: 494.
    https://onlinelibrary.wiley.com/doi/10.1562/2005-12-14-RA-754


  55. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles

    I.H. El-Sayed, X. Huang, and M.A. El-Sayed.
    Cancer Lett. 2006, 239 (1), 129-135. Citations: 1730.
    https://www.sciencedirect.com/science/article/pii/S0304383505007378


  56. The use of surface enhanced absorption, scattering and catalytic properties of gold nanoparticles in some bio- and biomedicine applications

    X. Huang, I.H. El-Sayed, and M.A. El-Sayed.
    Proc. SPIE- Int. Soc. Opt. Eng. 2005, 5929, 94-103.
    https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5929/1/The-use-of-surface-enhanced-absorption-scattering-and-catalytic-properties/10.1117/12.625431.short


  57. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer

    I.H. El-Sayed, X. Huang, and M.A. El-Sayed.
    Nano Lett. 2005, 5 (5), 829-834. Reported by Georgia Tech News. ACS hot paper. Citations: 2416.
    https://pubs.acs.org/doi/10.1021/nl050074e


  58. Gold nanoparticles: catalyst for the oxidation of NADH to NAD+

    X. Huang, I.H. El-Sayed, X. Yi, and M.A. El-Sayed.
    J. Photochem. Photobiol. B 2005, 81, 76-83.
    https://www.sciencedirect.com/science/article/pii/S1011134405001259?via%3Dihub


  59. Ultroviolet protection using intensity-dependent spectral shift in bacteriorhodopsin

    Y. Huang, J. Fu, D.J. Hagan, X. Huang, M.A. El-Sayed, and S.T. Wu. 
    IEEE J. Sel. Top. Quantum Electron. 2005, 11(4), 902-905.
    https://ieeexplore.ieee.org/document/1545992


  60. Investigation of the structures of gamma-Al2O3-supported MgO by Surface Extended Energy Loss Fine Structure

    X. Huang, H. Huang, D. Jiang, and B. Zhao.
    J. Phys. Chem. A 2002, 106, 2815-2820.
    https://pubs.acs.org/doi/pdf/10.1021/jp010712r


  61. Investigation of the dispersion of MgO onto gamma-Al2O3 by SEELFS

    X. Huang, H. Huang, D. Jiang, and B. Zhao.
    Modern Instrum. 2001, 1, 39-41.


  62. Investigation of structure and chemical states of self-assembled gold nanoscale particles by angle-resolved x-ray photoelectron spectroscopy

    X. Huang, H. Huang, N. Wu, R.  Hu, T. Zhu, and Z. Liu.
    Surf. Sci. 2000, 459, 183-190.
    https://www.sciencedirect.com/science/article/pii/S0039602800004830


  63. Investigation of the structures of Mg-Al mixed oxides by SEELFS

    X. Huang, H. Huang, D. Jiang, and B. Zhao.
    Acta Chim. Sinica 2000, 58, 909-911.
    http://sioc-journal.cn/Jwk_hxxb/EN/abstract/abstract336194.shtml

  64. Covalent attachment of gold nanoparticles onto the thiol-terminated surface through Gold-S Bonding

    R. Hu, T. Zhu, Z. Liu, X. Huang, H. Huang.
    Acta Phys.-Chim. Sinica 1999,15, 961-964.
    https://www.whxb.pku.edu.cn/EN/abstract/abstract22964.shtml